ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628

The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA , located in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2019-09, Vol.103 (17), p.7071-7084
Hauptverfasser: Xu, Jie, Song, Zhangqing, Xu, Xianhao, Ma, Zheng, Bechthold, Andreas, Yu, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7084
container_issue 17
container_start_page 7071
container_title Applied microbiology and biotechnology
container_volume 103
creator Xu, Jie
Song, Zhangqing
Xu, Xianhao
Ma, Zheng
Bechthold, Andreas
Yu, Xiaoping
description The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA , located in the TM biosynthetic gene cluster, was identified as a regulatory gene encoding a large ATP-binding regulator of the LuxR family (LAL-family). The role of toyA in TM biosynthesis in S. diastatochromogenes 1628 was investigated by gene deletion, complementation, and over-expression. Gene disruption of toyA resulted in almost loss of TM production. TM production in complemented strain was restored to the level comparable to that in the wild-type strain S. diastatochromogenes 1628. Over-expression of toyA separately controlled by promoter SPL57, SPL21, and p erm E * in wild-type strain S. diastatochromogenes 1628 led to a 2-fold, 1-fold, and 80% increase in TM production compared with wild-type strain S. diastatochromogenes 1628, respectively. Quantitative RT-PCR analysis revealed that the transcriptional level of toy structural genes was downregulated in the ΔtoyA mutant but restored in complemented strain and further upregulated in the toyA over-expression strain. The detection results from GFP reporter system in Escherichia coli and GUS reporter system and GUS activities in S. albus J1074 and S. diastatochromogenes 1628 showed that ToyA activated the expression of toyB and toyE operon directly and activated the expression of other toy structural genes indirectly. These results indicate that ToyA is essential for TM biosynthesis controlling the expression of structural genes.
doi_str_mv 10.1007/s00253-019-09959-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250621508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596346810</galeid><sourcerecordid>A596346810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-db6cb46da165067995b071932b90e8c009bedc66cdca7a95126d82ddf51b764e3</originalsourceid><addsrcrecordid>eNp9kl-L1TAQxYso7nX1C_ggBV8U7DpJm7R5vCz-WVgQ3PU5pMm0N0vbdJPUa7-9We_qckUkhDAzv3PIwMmylwTOCED9PgBQVhZARAFCMFHsH2UbUpW0AE6qx9kGSM2KmonmJHsWwg0AoQ3nT7OTklDGKW022e21W7fvcpXPLthov2M-q7jbq7UIM2rbWZ177JdBRefzLt3oVqfVuGo75a11YZ3iDoMNeaqvosc5ujTEkBurQkwyvfNudD1OqUc4bZ5nTzo1BHxx_55m3z5-uD7_XFx--XRxvr0sNCNlLEzLdVtxowhnwOu0Xws1ESVtBWCjAUSLRnOujVa1EoxQbhpqTMdIW_MKy9PszcF39u52wRDlaIPGYVATuiVISpMvJQyahL7-C71xi5_S7xJViZJAQh-oXg0o7dS56JW-M5VbJnhZ8YZAos7-QaVjcLTaTdjZ1D8SvD0SJCbij9irJQR5cfX1mKUHVnsXgsdOzt6Oyq-SgLzLhDxkQqZMyF-ZkPskenW_3dKOaP5IfocgAeUBCGk09egf1v-P7U-KhME3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249310506</pqid></control><display><type>article</type><title>ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Xu, Jie ; Song, Zhangqing ; Xu, Xianhao ; Ma, Zheng ; Bechthold, Andreas ; Yu, Xiaoping</creator><creatorcontrib>Xu, Jie ; Song, Zhangqing ; Xu, Xianhao ; Ma, Zheng ; Bechthold, Andreas ; Yu, Xiaoping</creatorcontrib><description>The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA , located in the TM biosynthetic gene cluster, was identified as a regulatory gene encoding a large ATP-binding regulator of the LuxR family (LAL-family). The role of toyA in TM biosynthesis in S. diastatochromogenes 1628 was investigated by gene deletion, complementation, and over-expression. Gene disruption of toyA resulted in almost loss of TM production. TM production in complemented strain was restored to the level comparable to that in the wild-type strain S. diastatochromogenes 1628. Over-expression of toyA separately controlled by promoter SPL57, SPL21, and p erm E * in wild-type strain S. diastatochromogenes 1628 led to a 2-fold, 1-fold, and 80% increase in TM production compared with wild-type strain S. diastatochromogenes 1628, respectively. Quantitative RT-PCR analysis revealed that the transcriptional level of toy structural genes was downregulated in the ΔtoyA mutant but restored in complemented strain and further upregulated in the toyA over-expression strain. The detection results from GFP reporter system in Escherichia coli and GUS reporter system and GUS activities in S. albus J1074 and S. diastatochromogenes 1628 showed that ToyA activated the expression of toyB and toyE operon directly and activated the expression of other toy structural genes indirectly. These results indicate that ToyA is essential for TM biosynthesis controlling the expression of structural genes.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-09959-w</identifier><identifier>PMID: 31256228</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antibiotics ; Applied Genetics and Molecular Biotechnology ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Biosynthetic Pathways - genetics ; Biotechnology ; Complementation ; Disruption ; E coli ; Escherichia coli ; Fungi ; Gene deletion ; Gene disruption ; Gene Expression ; Gene Expression Regulation, Bacterial ; Genes ; Genetic research ; Genetic transcription ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Multigene Family ; Mutation ; Overexpression ; Physiological aspects ; Polymerase chain reaction ; Promoter Regions, Genetic ; Streptomyces - genetics ; Streptomyces - metabolism ; Streptomyces diastatochromogenes ; Toyocamycin - biosynthesis ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2019-09, Vol.103 (17), p.7071-7084</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-db6cb46da165067995b071932b90e8c009bedc66cdca7a95126d82ddf51b764e3</citedby><cites>FETCH-LOGICAL-c513t-db6cb46da165067995b071932b90e8c009bedc66cdca7a95126d82ddf51b764e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-019-09959-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-019-09959-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31256228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Song, Zhangqing</creatorcontrib><creatorcontrib>Xu, Xianhao</creatorcontrib><creatorcontrib>Ma, Zheng</creatorcontrib><creatorcontrib>Bechthold, Andreas</creatorcontrib><creatorcontrib>Yu, Xiaoping</creatorcontrib><title>ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA , located in the TM biosynthetic gene cluster, was identified as a regulatory gene encoding a large ATP-binding regulator of the LuxR family (LAL-family). The role of toyA in TM biosynthesis in S. diastatochromogenes 1628 was investigated by gene deletion, complementation, and over-expression. Gene disruption of toyA resulted in almost loss of TM production. TM production in complemented strain was restored to the level comparable to that in the wild-type strain S. diastatochromogenes 1628. Over-expression of toyA separately controlled by promoter SPL57, SPL21, and p erm E * in wild-type strain S. diastatochromogenes 1628 led to a 2-fold, 1-fold, and 80% increase in TM production compared with wild-type strain S. diastatochromogenes 1628, respectively. Quantitative RT-PCR analysis revealed that the transcriptional level of toy structural genes was downregulated in the ΔtoyA mutant but restored in complemented strain and further upregulated in the toyA over-expression strain. The detection results from GFP reporter system in Escherichia coli and GUS reporter system and GUS activities in S. albus J1074 and S. diastatochromogenes 1628 showed that ToyA activated the expression of toyB and toyE operon directly and activated the expression of other toy structural genes indirectly. These results indicate that ToyA is essential for TM biosynthesis controlling the expression of structural genes.</description><subject>Antibiotics</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Biotechnology</subject><subject>Complementation</subject><subject>Disruption</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fungi</subject><subject>Gene deletion</subject><subject>Gene disruption</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Overexpression</subject><subject>Physiological aspects</subject><subject>Polymerase chain reaction</subject><subject>Promoter Regions, Genetic</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><subject>Streptomyces diastatochromogenes</subject><subject>Toyocamycin - biosynthesis</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl-L1TAQxYso7nX1C_ggBV8U7DpJm7R5vCz-WVgQ3PU5pMm0N0vbdJPUa7-9We_qckUkhDAzv3PIwMmylwTOCED9PgBQVhZARAFCMFHsH2UbUpW0AE6qx9kGSM2KmonmJHsWwg0AoQ3nT7OTklDGKW022e21W7fvcpXPLthov2M-q7jbq7UIM2rbWZ177JdBRefzLt3oVqfVuGo75a11YZ3iDoMNeaqvosc5ujTEkBurQkwyvfNudD1OqUc4bZ5nTzo1BHxx_55m3z5-uD7_XFx--XRxvr0sNCNlLEzLdVtxowhnwOu0Xws1ESVtBWCjAUSLRnOujVa1EoxQbhpqTMdIW_MKy9PszcF39u52wRDlaIPGYVATuiVISpMvJQyahL7-C71xi5_S7xJViZJAQh-oXg0o7dS56JW-M5VbJnhZ8YZAos7-QaVjcLTaTdjZ1D8SvD0SJCbij9irJQR5cfX1mKUHVnsXgsdOzt6Oyq-SgLzLhDxkQqZMyF-ZkPskenW_3dKOaP5IfocgAeUBCGk09egf1v-P7U-KhME3</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Xu, Jie</creator><creator>Song, Zhangqing</creator><creator>Xu, Xianhao</creator><creator>Ma, Zheng</creator><creator>Bechthold, Andreas</creator><creator>Yu, Xiaoping</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628</title><author>Xu, Jie ; Song, Zhangqing ; Xu, Xianhao ; Ma, Zheng ; Bechthold, Andreas ; Yu, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-db6cb46da165067995b071932b90e8c009bedc66cdca7a95126d82ddf51b764e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibiotics</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Biotechnology</topic><topic>Complementation</topic><topic>Disruption</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fungi</topic><topic>Gene deletion</topic><topic>Gene disruption</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Overexpression</topic><topic>Physiological aspects</topic><topic>Polymerase chain reaction</topic><topic>Promoter Regions, Genetic</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><topic>Streptomyces diastatochromogenes</topic><topic>Toyocamycin - biosynthesis</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Song, Zhangqing</creatorcontrib><creatorcontrib>Xu, Xianhao</creatorcontrib><creatorcontrib>Ma, Zheng</creatorcontrib><creatorcontrib>Bechthold, Andreas</creatorcontrib><creatorcontrib>Yu, Xiaoping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Song, Zhangqing</au><au>Xu, Xianhao</au><au>Ma, Zheng</au><au>Bechthold, Andreas</au><au>Yu, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>103</volume><issue>17</issue><spage>7071</spage><epage>7084</epage><pages>7071-7084</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The nucleoside antibiotic toyocamycin (TM), which was produced by Streptomyces diastatochromogenes 1628, was found to be highly efficient against a broad range of plant pathogenic fungi. Despite its importance, little is known about the regulation TM biosynthesis. In this study, toyA , located in the TM biosynthetic gene cluster, was identified as a regulatory gene encoding a large ATP-binding regulator of the LuxR family (LAL-family). The role of toyA in TM biosynthesis in S. diastatochromogenes 1628 was investigated by gene deletion, complementation, and over-expression. Gene disruption of toyA resulted in almost loss of TM production. TM production in complemented strain was restored to the level comparable to that in the wild-type strain S. diastatochromogenes 1628. Over-expression of toyA separately controlled by promoter SPL57, SPL21, and p erm E * in wild-type strain S. diastatochromogenes 1628 led to a 2-fold, 1-fold, and 80% increase in TM production compared with wild-type strain S. diastatochromogenes 1628, respectively. Quantitative RT-PCR analysis revealed that the transcriptional level of toy structural genes was downregulated in the ΔtoyA mutant but restored in complemented strain and further upregulated in the toyA over-expression strain. The detection results from GFP reporter system in Escherichia coli and GUS reporter system and GUS activities in S. albus J1074 and S. diastatochromogenes 1628 showed that ToyA activated the expression of toyB and toyE operon directly and activated the expression of other toy structural genes indirectly. These results indicate that ToyA is essential for TM biosynthesis controlling the expression of structural genes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31256228</pmid><doi>10.1007/s00253-019-09959-w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2019-09, Vol.103 (17), p.7071-7084
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2250621508
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Antibiotics
Applied Genetics and Molecular Biotechnology
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomedical and Life Sciences
Biosynthesis
Biosynthetic Pathways - genetics
Biotechnology
Complementation
Disruption
E coli
Escherichia coli
Fungi
Gene deletion
Gene disruption
Gene Expression
Gene Expression Regulation, Bacterial
Genes
Genetic research
Genetic transcription
Life Sciences
Microbial Genetics and Genomics
Microbiology
Multigene Family
Mutation
Overexpression
Physiological aspects
Polymerase chain reaction
Promoter Regions, Genetic
Streptomyces - genetics
Streptomyces - metabolism
Streptomyces diastatochromogenes
Toyocamycin - biosynthesis
Transcription
Transcription Factors - genetics
Transcription Factors - metabolism
title ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToyA,%20a%20positive%20pathway-specific%20regulator%20for%20toyocamycin%20biosynthesis%20in%20Streptomyces%20diastatochromogenes%201628&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Xu,%20Jie&rft.date=2019-09-01&rft.volume=103&rft.issue=17&rft.spage=7071&rft.epage=7084&rft.pages=7071-7084&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-09959-w&rft_dat=%3Cgale_proqu%3EA596346810%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249310506&rft_id=info:pmid/31256228&rft_galeid=A596346810&rfr_iscdi=true