High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors
Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photo...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-08, Vol.19 (8), p.5595-5603 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5603 |
---|---|
container_issue | 8 |
container_start_page | 5595 |
container_title | Nano letters |
container_volume | 19 |
creator | Wang, Qixing Zhang, Qi Zhao, Xiaoxu Zheng, Yu Jie Wang, Junyong Luo, Xin Dan, Jiadong Zhu, Rui Liang, Qijie Zhang, Lei Wong, P. K. Johnny He, Xiaoyue Huang, Yu Li Wang, Xinyun Pennycook, Stephen J Eda, Goki Wee, Andrew T. S |
description | Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photons with energy even lying 219 meV below the bandgap of WS2 at room temperature. With the increase of excitation wavelength from 620 to 680 nm, photoresponsivity varies from 551 to 59 mA/W. This anomalous phenomenon is ascribed to energy upconversion, which is a combination effect of one-photon excitation and multiphonon absorption through an intermediate state created most likely by sulfur divacancy with oxygen adsorption. These findings will arouse research interests on other upconversion optoelectronic devices, photovoltaic devices, for example, of monolayer transition metal dichalcogenides (TMDCs). |
doi_str_mv | 10.1021/acs.nanolett.9b02136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2248381617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248381617</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-79155b492c95957272350dd9ddb2398bf2bb697aadfd4253faeeba38293eb5053</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EoqXwBwhlySbFQ5zES1SGIhXBol1bdvzSpkrtYidI_XtcdViyeoPufcNB6J7gMcGUPKkqjK2yroWuGwsdWyy_QEPCGU5zIejlOS-zAboJYY0xFozjazRghGZE5GKIZtNmuUpfLfjlLnlXjU0W28rZX_ChcTaJ9aeLO9QOfDLv7TJ0YJOXJvRt3RhIvleucwY6qDrnwy26qlUb4O4YR2jx9jqfTNPZ1_vH5HmWqoxkXVoIwrnOBK0EF7ygBY1XGSOM0ZSJUtdU61wUSpnaZJSzWgFoxUoqGGiOORuhx8PcrXc_PYRObppQQdsqC64PktKsZCXJSRGl2UFaeReCh1pufbNRficJlnuOMnKUJ47yyDHaHo4ber0BczadwEUBPgj29rXrvY0P_z_zD-4JgxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248381617</pqid></control><display><type>article</type><title>High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors</title><source>ACS Publications</source><creator>Wang, Qixing ; Zhang, Qi ; Zhao, Xiaoxu ; Zheng, Yu Jie ; Wang, Junyong ; Luo, Xin ; Dan, Jiadong ; Zhu, Rui ; Liang, Qijie ; Zhang, Lei ; Wong, P. K. Johnny ; He, Xiaoyue ; Huang, Yu Li ; Wang, Xinyun ; Pennycook, Stephen J ; Eda, Goki ; Wee, Andrew T. S</creator><creatorcontrib>Wang, Qixing ; Zhang, Qi ; Zhao, Xiaoxu ; Zheng, Yu Jie ; Wang, Junyong ; Luo, Xin ; Dan, Jiadong ; Zhu, Rui ; Liang, Qijie ; Zhang, Lei ; Wong, P. K. Johnny ; He, Xiaoyue ; Huang, Yu Li ; Wang, Xinyun ; Pennycook, Stephen J ; Eda, Goki ; Wee, Andrew T. S</creatorcontrib><description>Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photons with energy even lying 219 meV below the bandgap of WS2 at room temperature. With the increase of excitation wavelength from 620 to 680 nm, photoresponsivity varies from 551 to 59 mA/W. This anomalous phenomenon is ascribed to energy upconversion, which is a combination effect of one-photon excitation and multiphonon absorption through an intermediate state created most likely by sulfur divacancy with oxygen adsorption. These findings will arouse research interests on other upconversion optoelectronic devices, photovoltaic devices, for example, of monolayer transition metal dichalcogenides (TMDCs).</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b02136</identifier><identifier>PMID: 31241969</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-08, Vol.19 (8), p.5595-5603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-79155b492c95957272350dd9ddb2398bf2bb697aadfd4253faeeba38293eb5053</citedby><cites>FETCH-LOGICAL-a414t-79155b492c95957272350dd9ddb2398bf2bb697aadfd4253faeeba38293eb5053</cites><orcidid>0000-0002-5828-4312 ; 0000-0003-4252-7997 ; 0000-0002-1575-8020 ; 0000-0003-0623-1910 ; 0000-0001-9746-3770 ; 0000-0003-3699-4708 ; 0000-0003-4201-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b02136$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b02136$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31241969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qixing</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhao, Xiaoxu</creatorcontrib><creatorcontrib>Zheng, Yu Jie</creatorcontrib><creatorcontrib>Wang, Junyong</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Dan, Jiadong</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Liang, Qijie</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wong, P. K. Johnny</creatorcontrib><creatorcontrib>He, Xiaoyue</creatorcontrib><creatorcontrib>Huang, Yu Li</creatorcontrib><creatorcontrib>Wang, Xinyun</creatorcontrib><creatorcontrib>Pennycook, Stephen J</creatorcontrib><creatorcontrib>Eda, Goki</creatorcontrib><creatorcontrib>Wee, Andrew T. S</creatorcontrib><title>High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photons with energy even lying 219 meV below the bandgap of WS2 at room temperature. With the increase of excitation wavelength from 620 to 680 nm, photoresponsivity varies from 551 to 59 mA/W. This anomalous phenomenon is ascribed to energy upconversion, which is a combination effect of one-photon excitation and multiphonon absorption through an intermediate state created most likely by sulfur divacancy with oxygen adsorption. These findings will arouse research interests on other upconversion optoelectronic devices, photovoltaic devices, for example, of monolayer transition metal dichalcogenides (TMDCs).</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EoqXwBwhlySbFQ5zES1SGIhXBol1bdvzSpkrtYidI_XtcdViyeoPufcNB6J7gMcGUPKkqjK2yroWuGwsdWyy_QEPCGU5zIejlOS-zAboJYY0xFozjazRghGZE5GKIZtNmuUpfLfjlLnlXjU0W28rZX_ChcTaJ9aeLO9QOfDLv7TJ0YJOXJvRt3RhIvleucwY6qDrnwy26qlUb4O4YR2jx9jqfTNPZ1_vH5HmWqoxkXVoIwrnOBK0EF7ygBY1XGSOM0ZSJUtdU61wUSpnaZJSzWgFoxUoqGGiOORuhx8PcrXc_PYRObppQQdsqC64PktKsZCXJSRGl2UFaeReCh1pufbNRficJlnuOMnKUJ47yyDHaHo4ber0BczadwEUBPgj29rXrvY0P_z_zD-4JgxY</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Wang, Qixing</creator><creator>Zhang, Qi</creator><creator>Zhao, Xiaoxu</creator><creator>Zheng, Yu Jie</creator><creator>Wang, Junyong</creator><creator>Luo, Xin</creator><creator>Dan, Jiadong</creator><creator>Zhu, Rui</creator><creator>Liang, Qijie</creator><creator>Zhang, Lei</creator><creator>Wong, P. K. Johnny</creator><creator>He, Xiaoyue</creator><creator>Huang, Yu Li</creator><creator>Wang, Xinyun</creator><creator>Pennycook, Stephen J</creator><creator>Eda, Goki</creator><creator>Wee, Andrew T. S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5828-4312</orcidid><orcidid>https://orcid.org/0000-0003-4252-7997</orcidid><orcidid>https://orcid.org/0000-0002-1575-8020</orcidid><orcidid>https://orcid.org/0000-0003-0623-1910</orcidid><orcidid>https://orcid.org/0000-0001-9746-3770</orcidid><orcidid>https://orcid.org/0000-0003-3699-4708</orcidid><orcidid>https://orcid.org/0000-0003-4201-7196</orcidid></search><sort><creationdate>20190814</creationdate><title>High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors</title><author>Wang, Qixing ; Zhang, Qi ; Zhao, Xiaoxu ; Zheng, Yu Jie ; Wang, Junyong ; Luo, Xin ; Dan, Jiadong ; Zhu, Rui ; Liang, Qijie ; Zhang, Lei ; Wong, P. K. Johnny ; He, Xiaoyue ; Huang, Yu Li ; Wang, Xinyun ; Pennycook, Stephen J ; Eda, Goki ; Wee, Andrew T. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-79155b492c95957272350dd9ddb2398bf2bb697aadfd4253faeeba38293eb5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qixing</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhao, Xiaoxu</creatorcontrib><creatorcontrib>Zheng, Yu Jie</creatorcontrib><creatorcontrib>Wang, Junyong</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Dan, Jiadong</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Liang, Qijie</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wong, P. K. Johnny</creatorcontrib><creatorcontrib>He, Xiaoyue</creatorcontrib><creatorcontrib>Huang, Yu Li</creatorcontrib><creatorcontrib>Wang, Xinyun</creatorcontrib><creatorcontrib>Pennycook, Stephen J</creatorcontrib><creatorcontrib>Eda, Goki</creatorcontrib><creatorcontrib>Wee, Andrew T. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qixing</au><au>Zhang, Qi</au><au>Zhao, Xiaoxu</au><au>Zheng, Yu Jie</au><au>Wang, Junyong</au><au>Luo, Xin</au><au>Dan, Jiadong</au><au>Zhu, Rui</au><au>Liang, Qijie</au><au>Zhang, Lei</au><au>Wong, P. K. Johnny</au><au>He, Xiaoyue</au><au>Huang, Yu Li</au><au>Wang, Xinyun</au><au>Pennycook, Stephen J</au><au>Eda, Goki</au><au>Wee, Andrew T. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>19</volume><issue>8</issue><spage>5595</spage><epage>5603</epage><pages>5595-5603</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Photodetectors usually operate in the wavelength range with photon energy above the bandgap of channel semiconductors so that incident photons can excite electrons from valence band to conduction band to generate photocurrent. Here, however, we show that monolayer WS2 photodetectors can detect photons with energy even lying 219 meV below the bandgap of WS2 at room temperature. With the increase of excitation wavelength from 620 to 680 nm, photoresponsivity varies from 551 to 59 mA/W. This anomalous phenomenon is ascribed to energy upconversion, which is a combination effect of one-photon excitation and multiphonon absorption through an intermediate state created most likely by sulfur divacancy with oxygen adsorption. These findings will arouse research interests on other upconversion optoelectronic devices, photovoltaic devices, for example, of monolayer transition metal dichalcogenides (TMDCs).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31241969</pmid><doi>10.1021/acs.nanolett.9b02136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5828-4312</orcidid><orcidid>https://orcid.org/0000-0003-4252-7997</orcidid><orcidid>https://orcid.org/0000-0002-1575-8020</orcidid><orcidid>https://orcid.org/0000-0003-0623-1910</orcidid><orcidid>https://orcid.org/0000-0001-9746-3770</orcidid><orcidid>https://orcid.org/0000-0003-3699-4708</orcidid><orcidid>https://orcid.org/0000-0003-4201-7196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-08, Vol.19 (8), p.5595-5603 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2248381617 |
source | ACS Publications |
title | High-Energy Gain Upconversion in Monolayer Tungsten Disulfide Photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Energy%20Gain%20Upconversion%20in%20Monolayer%20Tungsten%20Disulfide%20Photodetectors&rft.jtitle=Nano%20letters&rft.au=Wang,%20Qixing&rft.date=2019-08-14&rft.volume=19&rft.issue=8&rft.spage=5595&rft.epage=5603&rft.pages=5595-5603&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b02136&rft_dat=%3Cproquest_cross%3E2248381617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248381617&rft_id=info:pmid/31241969&rfr_iscdi=true |