Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2020-02, Vol.27 (1-2), p.27-39 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1-2 |
container_start_page | 27 |
container_title | Gene therapy |
container_volume | 27 |
creator | Nascimento-dos-Santos, Gabriel Teixeira-Pinheiro, Leandro Coelho da Silva-Júnior, Almir Jordão Carvalho, Luiza Rachel Pinheiro de Mesentier-Louro, Louise Alessandra Hauswirth, William W. Mendez-Otero, Rosalia Santiago, Marcelo Felippe Petrs-Silva, Hilda |
description | After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury. |
doi_str_mv | 10.1038/s41434-019-0089-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2248379224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615207091</galeid><sourcerecordid>A615207091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f8eed51b7e8793a5f6ee3879f6d52024b920c0450e862d76f18106d09b855f363</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhgdR7Fr9Ad5IQCj1Ymq-JjO5LKXVQkHw4zpkZ05ms8wka5LZdn-Ff9mMW60rKoEknPO8J8nJWxQvCT4jmDVvIyec8RITWWLc5OlRsSC8FmXFBX1cLLAUsqwJbY6KZzGuMca8bujT4ogRyhmTbFF8uzQG2hSRN0ij1o9L63TyweoBpQA6jeASurVphXpwgLTrUAtDTq4g6M0OeYcCpCwaUK9dP9gc-AHEKWztNodnib7zM-Gn1Ad_m4tpkyAgv0m2RQ7CFpB16ynsnhdPjB4ivLhfj4svV5efL96XNx_eXV-c35RtxWgqTQPQVWRZQ1NLpisjAFjeGtFVFFO-lBS3mFcYGkG7WhjSECw6LJdNVRkm2HFxuq-7Cf7rBDGp0cb53tqBn6KilDeslnnJ6Os_0LWfQn5OpnjNZUOIIP-l8nmykphWD1SvB1DWGZ-Cbuej1bkg-eo1lnOts79QeXQw2tY7MDbHDwRvDgSZSXCXej3FqK4_fTxkT35jV6CHtIp-mFL-uXgIkj3YBh9jAKM2wY467BTBavaf2vtPZf-p2X8KZ82r-y5MyxG6X4qfhssA3QMxp1wP4aFN_676HQxm4mU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363959025</pqid></control><display><type>article</type><title>Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nascimento-dos-Santos, Gabriel ; Teixeira-Pinheiro, Leandro Coelho ; da Silva-Júnior, Almir Jordão ; Carvalho, Luiza Rachel Pinheiro de ; Mesentier-Louro, Louise Alessandra ; Hauswirth, William W. ; Mendez-Otero, Rosalia ; Santiago, Marcelo Felippe ; Petrs-Silva, Hilda</creator><creatorcontrib>Nascimento-dos-Santos, Gabriel ; Teixeira-Pinheiro, Leandro Coelho ; da Silva-Júnior, Almir Jordão ; Carvalho, Luiza Rachel Pinheiro de ; Mesentier-Louro, Louise Alessandra ; Hauswirth, William W. ; Mendez-Otero, Rosalia ; Santiago, Marcelo Felippe ; Petrs-Silva, Hilda</creatorcontrib><description>After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-019-0089-0</identifier><identifier>PMID: 31243393</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/21 ; 13/51 ; 14/1 ; 14/19 ; 14/34 ; 14/63 ; 42/44 ; 631/378/1687 ; 631/532/2074 ; 631/532/489 ; 631/61/201 ; Analysis ; Animals ; Axons ; Axons - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Line, Tumor ; Cell Survival ; Cell therapy ; Cell- and Tissue-Based Therapy - methods ; Central nervous system ; Disease Models, Animal ; Epithelium ; Eye Proteins - metabolism ; Eye Proteins - pharmacology ; Female ; Fibroblast growth factor 2 ; Ganglion ; Gene Expression ; Gene Expression Regulation, Neoplastic - genetics ; Gene Therapy ; Genes ; Glial fibrillary acidic protein ; Health aspects ; Human Genetics ; Humans ; Male ; Mesenchymal Stem Cell Transplantation - methods ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; Nanotechnology ; Nerve Crush ; Nerve Growth Factors - metabolism ; Nerve Growth Factors - pharmacology ; Nerve Regeneration ; Neuroprotection ; Optic Nerve ; Optic Nerve Injuries - therapy ; Pigment epithelium-derived factor ; Rats, Wistar ; Retina ; Retinal Ganglion Cells - drug effects ; Retinal Ganglion Cells - metabolism ; Serpins - metabolism ; Serpins - pharmacology ; Stem cells ; Therapeutic applications ; Transplantation</subject><ispartof>Gene therapy, 2020-02, Vol.27 (1-2), p.27-39</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f8eed51b7e8793a5f6ee3879f6d52024b920c0450e862d76f18106d09b855f363</citedby><cites>FETCH-LOGICAL-c532t-f8eed51b7e8793a5f6ee3879f6d52024b920c0450e862d76f18106d09b855f363</cites><orcidid>0000-0003-2428-9606 ; 0000-0001-8961-2959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41434-019-0089-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41434-019-0089-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31243393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nascimento-dos-Santos, Gabriel</creatorcontrib><creatorcontrib>Teixeira-Pinheiro, Leandro Coelho</creatorcontrib><creatorcontrib>da Silva-Júnior, Almir Jordão</creatorcontrib><creatorcontrib>Carvalho, Luiza Rachel Pinheiro de</creatorcontrib><creatorcontrib>Mesentier-Louro, Louise Alessandra</creatorcontrib><creatorcontrib>Hauswirth, William W.</creatorcontrib><creatorcontrib>Mendez-Otero, Rosalia</creatorcontrib><creatorcontrib>Santiago, Marcelo Felippe</creatorcontrib><creatorcontrib>Petrs-Silva, Hilda</creatorcontrib><title>Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.</description><subject>13/100</subject><subject>13/21</subject><subject>13/51</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>14/63</subject><subject>42/44</subject><subject>631/378/1687</subject><subject>631/532/2074</subject><subject>631/532/489</subject><subject>631/61/201</subject><subject>Analysis</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy - methods</subject><subject>Central nervous system</subject><subject>Disease Models, Animal</subject><subject>Epithelium</subject><subject>Eye Proteins - metabolism</subject><subject>Eye Proteins - pharmacology</subject><subject>Female</subject><subject>Fibroblast growth factor 2</subject><subject>Ganglion</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Therapy</subject><subject>Genes</subject><subject>Glial fibrillary acidic protein</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Nanotechnology</subject><subject>Nerve Crush</subject><subject>Nerve Growth Factors - metabolism</subject><subject>Nerve Growth Factors - pharmacology</subject><subject>Nerve Regeneration</subject><subject>Neuroprotection</subject><subject>Optic Nerve</subject><subject>Optic Nerve Injuries - therapy</subject><subject>Pigment epithelium-derived factor</subject><subject>Rats, Wistar</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - drug effects</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Serpins - metabolism</subject><subject>Serpins - pharmacology</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><subject>Transplantation</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl1rFDEUhgdR7Fr9Ad5IQCj1Ymq-JjO5LKXVQkHw4zpkZ05ms8wka5LZdn-Ff9mMW60rKoEknPO8J8nJWxQvCT4jmDVvIyec8RITWWLc5OlRsSC8FmXFBX1cLLAUsqwJbY6KZzGuMca8bujT4ogRyhmTbFF8uzQG2hSRN0ij1o9L63TyweoBpQA6jeASurVphXpwgLTrUAtDTq4g6M0OeYcCpCwaUK9dP9gc-AHEKWztNodnib7zM-Gn1Ad_m4tpkyAgv0m2RQ7CFpB16ynsnhdPjB4ivLhfj4svV5efL96XNx_eXV-c35RtxWgqTQPQVWRZQ1NLpisjAFjeGtFVFFO-lBS3mFcYGkG7WhjSECw6LJdNVRkm2HFxuq-7Cf7rBDGp0cb53tqBn6KilDeslnnJ6Os_0LWfQn5OpnjNZUOIIP-l8nmykphWD1SvB1DWGZ-Cbuej1bkg-eo1lnOts79QeXQw2tY7MDbHDwRvDgSZSXCXej3FqK4_fTxkT35jV6CHtIp-mFL-uXgIkj3YBh9jAKM2wY467BTBavaf2vtPZf-p2X8KZ82r-y5MyxG6X4qfhssA3QMxp1wP4aFN_676HQxm4mU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Nascimento-dos-Santos, Gabriel</creator><creator>Teixeira-Pinheiro, Leandro Coelho</creator><creator>da Silva-Júnior, Almir Jordão</creator><creator>Carvalho, Luiza Rachel Pinheiro de</creator><creator>Mesentier-Louro, Louise Alessandra</creator><creator>Hauswirth, William W.</creator><creator>Mendez-Otero, Rosalia</creator><creator>Santiago, Marcelo Felippe</creator><creator>Petrs-Silva, Hilda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2428-9606</orcidid><orcidid>https://orcid.org/0000-0001-8961-2959</orcidid></search><sort><creationdate>20200201</creationdate><title>Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury</title><author>Nascimento-dos-Santos, Gabriel ; Teixeira-Pinheiro, Leandro Coelho ; da Silva-Júnior, Almir Jordão ; Carvalho, Luiza Rachel Pinheiro de ; Mesentier-Louro, Louise Alessandra ; Hauswirth, William W. ; Mendez-Otero, Rosalia ; Santiago, Marcelo Felippe ; Petrs-Silva, Hilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f8eed51b7e8793a5f6ee3879f6d52024b920c0450e862d76f18106d09b855f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/100</topic><topic>13/21</topic><topic>13/51</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>14/63</topic><topic>42/44</topic><topic>631/378/1687</topic><topic>631/532/2074</topic><topic>631/532/489</topic><topic>631/61/201</topic><topic>Analysis</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy - methods</topic><topic>Central nervous system</topic><topic>Disease Models, Animal</topic><topic>Epithelium</topic><topic>Eye Proteins - metabolism</topic><topic>Eye Proteins - pharmacology</topic><topic>Female</topic><topic>Fibroblast growth factor 2</topic><topic>Ganglion</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Therapy</topic><topic>Genes</topic><topic>Glial fibrillary acidic protein</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Nanotechnology</topic><topic>Nerve Crush</topic><topic>Nerve Growth Factors - metabolism</topic><topic>Nerve Growth Factors - pharmacology</topic><topic>Nerve Regeneration</topic><topic>Neuroprotection</topic><topic>Optic Nerve</topic><topic>Optic Nerve Injuries - therapy</topic><topic>Pigment epithelium-derived factor</topic><topic>Rats, Wistar</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - drug effects</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Serpins - metabolism</topic><topic>Serpins - pharmacology</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento-dos-Santos, Gabriel</creatorcontrib><creatorcontrib>Teixeira-Pinheiro, Leandro Coelho</creatorcontrib><creatorcontrib>da Silva-Júnior, Almir Jordão</creatorcontrib><creatorcontrib>Carvalho, Luiza Rachel Pinheiro de</creatorcontrib><creatorcontrib>Mesentier-Louro, Louise Alessandra</creatorcontrib><creatorcontrib>Hauswirth, William W.</creatorcontrib><creatorcontrib>Mendez-Otero, Rosalia</creatorcontrib><creatorcontrib>Santiago, Marcelo Felippe</creatorcontrib><creatorcontrib>Petrs-Silva, Hilda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento-dos-Santos, Gabriel</au><au>Teixeira-Pinheiro, Leandro Coelho</au><au>da Silva-Júnior, Almir Jordão</au><au>Carvalho, Luiza Rachel Pinheiro de</au><au>Mesentier-Louro, Louise Alessandra</au><au>Hauswirth, William W.</au><au>Mendez-Otero, Rosalia</au><au>Santiago, Marcelo Felippe</au><au>Petrs-Silva, Hilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>27</volume><issue>1-2</issue><spage>27</spage><epage>39</epage><pages>27-39</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31243393</pmid><doi>10.1038/s41434-019-0089-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2428-9606</orcidid><orcidid>https://orcid.org/0000-0001-8961-2959</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2020-02, Vol.27 (1-2), p.27-39 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_proquest_miscellaneous_2248379224 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/100 13/21 13/51 14/1 14/19 14/34 14/63 42/44 631/378/1687 631/532/2074 631/532/489 631/61/201 Analysis Animals Axons Axons - physiology Biomedical and Life Sciences Biomedicine Cell Biology Cell Line, Tumor Cell Survival Cell therapy Cell- and Tissue-Based Therapy - methods Central nervous system Disease Models, Animal Epithelium Eye Proteins - metabolism Eye Proteins - pharmacology Female Fibroblast growth factor 2 Ganglion Gene Expression Gene Expression Regulation, Neoplastic - genetics Gene Therapy Genes Glial fibrillary acidic protein Health aspects Human Genetics Humans Male Mesenchymal Stem Cell Transplantation - methods Mesenchymal Stem Cells - metabolism Mesenchyme Nanotechnology Nerve Crush Nerve Growth Factors - metabolism Nerve Growth Factors - pharmacology Nerve Regeneration Neuroprotection Optic Nerve Optic Nerve Injuries - therapy Pigment epithelium-derived factor Rats, Wistar Retina Retinal Ganglion Cells - drug effects Retinal Ganglion Cells - metabolism Serpins - metabolism Serpins - pharmacology Stem cells Therapeutic applications Transplantation |
title | Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20a%20combinatorial%20treatment%20with%20gene%20and%20cell%20therapy%20on%20retinal%20ganglion%20cell%20survival%20and%20axonal%20outgrowth%20after%20optic%20nerve%20injury&rft.jtitle=Gene%20therapy&rft.au=Nascimento-dos-Santos,%20Gabriel&rft.date=2020-02-01&rft.volume=27&rft.issue=1-2&rft.spage=27&rft.epage=39&rft.pages=27-39&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-019-0089-0&rft_dat=%3Cgale_proqu%3EA615207091%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363959025&rft_id=info:pmid/31243393&rft_galeid=A615207091&rfr_iscdi=true |