Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3

Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-07, Vol.13 (7), p.8004-8011
Hauptverfasser: Zhang, Fan, Wang, Zhe, Dong, Jiyu, Nie, Anmin, Xiang, Jianyong, Zhu, Wenguang, Liu, Zhongyuan, Tao, Chenggang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8011
container_issue 7
container_start_page 8004
container_title ACS nano
container_volume 13
creator Zhang, Fan
Wang, Zhe
Dong, Jiyu
Nie, Anmin
Xiang, Jianyong
Zhu, Wenguang
Liu, Zhongyuan
Tao, Chenggang
description Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the β phase with a superstructure at room temperature. At around 180 K, the β phase converted to a more stable β′ phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven β-to-β′ phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the β′ phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer β′ In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).
doi_str_mv 10.1021/acsnano.9b02764
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2248379106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248379106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-79aaea474ece3fe3003e753587428d6a3d91e97c4df2947d3e54ec270cc4cf2a3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnrzkKsjVfu9kcS_0qFCq2gp7CNDtLt2wT3WwL_vdGWzzNMO_NvOFHyDVnI84EvwMXPfgwMismdKFOyIAbWWSsLN5P__ucn5OLGDeM5brUxYB8jPuwbVy2cNAina8idnvom-BpqOkr7rGLzSopyzV2W2jbb3rfNXv09GUNMY078LEOSfrbaTwV93TqxQLlJTmroY14daxD8vb4sJw8Z7P503QynmUghOozbQAQlFboUNYoGZOoc5mXWomyKkBWhqPRTlW1MEpXEvNkFZo5p1wtQA7JzeHuZxe-dhh7u22iw7YFj2EXbUoppTacFcl6e7AmVnYTdp1Pj1nO7C9AewRojwDlD9-NZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248379106</pqid></control><display><type>article</type><title>Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3</title><source>ACS Publications</source><creator>Zhang, Fan ; Wang, Zhe ; Dong, Jiyu ; Nie, Anmin ; Xiang, Jianyong ; Zhu, Wenguang ; Liu, Zhongyuan ; Tao, Chenggang</creator><creatorcontrib>Zhang, Fan ; Wang, Zhe ; Dong, Jiyu ; Nie, Anmin ; Xiang, Jianyong ; Zhu, Wenguang ; Liu, Zhongyuan ; Tao, Chenggang</creatorcontrib><description>Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the β phase with a superstructure at room temperature. At around 180 K, the β phase converted to a more stable β′ phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven β-to-β′ phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the β′ phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer β′ In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b02764</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2019-07, Vol.13 (7), p.8004-8011</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0819-595X ; 0000-0002-6609-0219 ; 0000-0001-9374-7127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b02764$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b02764$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Dong, Jiyu</creatorcontrib><creatorcontrib>Nie, Anmin</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhu, Wenguang</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Tao, Chenggang</creatorcontrib><title>Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the β phase with a superstructure at room temperature. At around 180 K, the β phase converted to a more stable β′ phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven β-to-β′ phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the β′ phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer β′ In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKtnrzkKsjVfu9kcS_0qFCq2gp7CNDtLt2wT3WwL_vdGWzzNMO_NvOFHyDVnI84EvwMXPfgwMismdKFOyIAbWWSsLN5P__ucn5OLGDeM5brUxYB8jPuwbVy2cNAina8idnvom-BpqOkr7rGLzSopyzV2W2jbb3rfNXv09GUNMY078LEOSfrbaTwV93TqxQLlJTmroY14daxD8vb4sJw8Z7P503QynmUghOozbQAQlFboUNYoGZOoc5mXWomyKkBWhqPRTlW1MEpXEvNkFZo5p1wtQA7JzeHuZxe-dhh7u22iw7YFj2EXbUoppTacFcl6e7AmVnYTdp1Pj1nO7C9AewRojwDlD9-NZXw</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Zhang, Fan</creator><creator>Wang, Zhe</creator><creator>Dong, Jiyu</creator><creator>Nie, Anmin</creator><creator>Xiang, Jianyong</creator><creator>Zhu, Wenguang</creator><creator>Liu, Zhongyuan</creator><creator>Tao, Chenggang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0819-595X</orcidid><orcidid>https://orcid.org/0000-0002-6609-0219</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid></search><sort><creationdate>20190723</creationdate><title>Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3</title><author>Zhang, Fan ; Wang, Zhe ; Dong, Jiyu ; Nie, Anmin ; Xiang, Jianyong ; Zhu, Wenguang ; Liu, Zhongyuan ; Tao, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-79aaea474ece3fe3003e753587428d6a3d91e97c4df2947d3e54ec270cc4cf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Dong, Jiyu</creatorcontrib><creatorcontrib>Nie, Anmin</creatorcontrib><creatorcontrib>Xiang, Jianyong</creatorcontrib><creatorcontrib>Zhu, Wenguang</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Tao, Chenggang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Wang, Zhe</au><au>Dong, Jiyu</au><au>Nie, Anmin</au><au>Xiang, Jianyong</au><au>Zhu, Wenguang</au><au>Liu, Zhongyuan</au><au>Tao, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-07-23</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><spage>8004</spage><epage>8011</epage><pages>8004-8011</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the β phase with a superstructure at room temperature. At around 180 K, the β phase converted to a more stable β′ phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven β-to-β′ phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the β′ phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer β′ In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.9b02764</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0819-595X</orcidid><orcidid>https://orcid.org/0000-0002-6609-0219</orcidid><orcidid>https://orcid.org/0000-0001-9374-7127</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-07, Vol.13 (7), p.8004-8011
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2248379106
source ACS Publications
title Atomic-Scale Observation of Reversible Thermally Driven Phase Transformation in 2D In2Se3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Observation%20of%20Reversible%20Thermally%20Driven%20Phase%20Transformation%20in%202D%20In2Se3&rft.jtitle=ACS%20nano&rft.au=Zhang,%20Fan&rft.date=2019-07-23&rft.volume=13&rft.issue=7&rft.spage=8004&rft.epage=8011&rft.pages=8004-8011&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b02764&rft_dat=%3Cproquest_acs_j%3E2248379106%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248379106&rft_id=info:pmid/&rfr_iscdi=true