A search for forward scattering of sunlight from lunar libration clouds

An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radianc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planetary and space science 1975-01, Vol.23 (9), p.1313-1319
Hauptverfasser: Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L., Hopfield, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 9
container_start_page 1313
container_title Planetary and space science
container_volume 23
creator Munro, R.H.
Gosling, J.T.
Hildner, E.
MacQueen, R.M.
Poland, A.I.
Ross, C.L.
Hopfield, A.
description An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10 −11B ⊚ , where B ⊚ is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 10 2–10 3 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33−0.05 i and 1·50−0.05 i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ∼30 deg.
doi_str_mv 10.1016/0032-0633(75)90155-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22477806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0032063375901555</els_id><sourcerecordid>18468146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-33bb6f0997b3b68f6d160daf603c26f9244831e0c5cbdc6175094fab90f76c653</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwBgyeEAyBcxyfkwWpqqAgVWKB2XIcuzVK42InIN6ehiJGGE63fPfr_o-QcwbXDBjeAPA8A-T8UoqrCpgQmTggE1ZKngkoy0My-UWOyUlKrwCAmMsJWcxosjqaNXUhjvOhY0OT0X1vo-9WNDiahq71q3VPXQwb2g6djrT1ddS9Dx01bRiadEqOnG6TPfvZU_Jyf_c8f8iWT4vH-WyZGY7YZ5zXNTqoKlnzGkuHDUNotEPgJkdX5UVRcmbBCFM3BpkUUBVO1xU4iQYFn5KLfe42hrfBpl5tfDK2bXVnw5BUnhdSlrui_4GsLLBkxQgWe9DEkFK0Tm2j3-j4qRioUa8a3anRnZJCfetV4yO3-zO7a_vubVTJeNsZ2_hoTa-a4P8O-AIhKYDL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18468146</pqid></control><display><type>article</type><title>A search for forward scattering of sunlight from lunar libration clouds</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Munro, R.H. ; Gosling, J.T. ; Hildner, E. ; MacQueen, R.M. ; Poland, A.I. ; Ross, C.L. ; Hopfield, A.</creator><creatorcontrib>Munro, R.H. ; Gosling, J.T. ; Hildner, E. ; MacQueen, R.M. ; Poland, A.I. ; Ross, C.L. ; Hopfield, A.</creatorcontrib><description>An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10 −11B ⊚ , where B ⊚ is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 10 2–10 3 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33−0.05 i and 1·50−0.05 i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ∼30 deg.</description><identifier>ISSN: 0032-0633</identifier><identifier>EISSN: 1873-5088</identifier><identifier>DOI: 10.1016/0032-0633(75)90155-5</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Planetary and space science, 1975-01, Vol.23 (9), p.1313-1319</ispartof><rights>1975</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-33bb6f0997b3b68f6d160daf603c26f9244831e0c5cbdc6175094fab90f76c653</citedby><cites>FETCH-LOGICAL-c366t-33bb6f0997b3b68f6d160daf603c26f9244831e0c5cbdc6175094fab90f76c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0032-0633(75)90155-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Munro, R.H.</creatorcontrib><creatorcontrib>Gosling, J.T.</creatorcontrib><creatorcontrib>Hildner, E.</creatorcontrib><creatorcontrib>MacQueen, R.M.</creatorcontrib><creatorcontrib>Poland, A.I.</creatorcontrib><creatorcontrib>Ross, C.L.</creatorcontrib><creatorcontrib>Hopfield, A.</creatorcontrib><title>A search for forward scattering of sunlight from lunar libration clouds</title><title>Planetary and space science</title><description>An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10 −11B ⊚ , where B ⊚ is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 10 2–10 3 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33−0.05 i and 1·50−0.05 i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ∼30 deg.</description><issn>0032-0633</issn><issn>1873-5088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwBgyeEAyBcxyfkwWpqqAgVWKB2XIcuzVK42InIN6ehiJGGE63fPfr_o-QcwbXDBjeAPA8A-T8UoqrCpgQmTggE1ZKngkoy0My-UWOyUlKrwCAmMsJWcxosjqaNXUhjvOhY0OT0X1vo-9WNDiahq71q3VPXQwb2g6djrT1ddS9Dx01bRiadEqOnG6TPfvZU_Jyf_c8f8iWT4vH-WyZGY7YZ5zXNTqoKlnzGkuHDUNotEPgJkdX5UVRcmbBCFM3BpkUUBVO1xU4iQYFn5KLfe42hrfBpl5tfDK2bXVnw5BUnhdSlrui_4GsLLBkxQgWe9DEkFK0Tm2j3-j4qRioUa8a3anRnZJCfetV4yO3-zO7a_vubVTJeNsZ2_hoTa-a4P8O-AIhKYDL</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>Munro, R.H.</creator><creator>Gosling, J.T.</creator><creator>Hildner, E.</creator><creator>MacQueen, R.M.</creator><creator>Poland, A.I.</creator><creator>Ross, C.L.</creator><creator>Hopfield, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19750101</creationdate><title>A search for forward scattering of sunlight from lunar libration clouds</title><author>Munro, R.H. ; Gosling, J.T. ; Hildner, E. ; MacQueen, R.M. ; Poland, A.I. ; Ross, C.L. ; Hopfield, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-33bb6f0997b3b68f6d160daf603c26f9244831e0c5cbdc6175094fab90f76c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munro, R.H.</creatorcontrib><creatorcontrib>Gosling, J.T.</creatorcontrib><creatorcontrib>Hildner, E.</creatorcontrib><creatorcontrib>MacQueen, R.M.</creatorcontrib><creatorcontrib>Poland, A.I.</creatorcontrib><creatorcontrib>Ross, C.L.</creatorcontrib><creatorcontrib>Hopfield, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Planetary and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munro, R.H.</au><au>Gosling, J.T.</au><au>Hildner, E.</au><au>MacQueen, R.M.</au><au>Poland, A.I.</au><au>Ross, C.L.</au><au>Hopfield, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A search for forward scattering of sunlight from lunar libration clouds</atitle><jtitle>Planetary and space science</jtitle><date>1975-01-01</date><risdate>1975</risdate><volume>23</volume><issue>9</issue><spage>1313</spage><epage>1319</epage><pages>1313-1319</pages><issn>0032-0633</issn><eissn>1873-5088</eissn><abstract>An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10 −11B ⊚ , where B ⊚ is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 10 2–10 3 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33−0.05 i and 1·50−0.05 i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ∼30 deg.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0032-0633(75)90155-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0633
ispartof Planetary and space science, 1975-01, Vol.23 (9), p.1313-1319
issn 0032-0633
1873-5088
language eng
recordid cdi_proquest_miscellaneous_22477806
source Elsevier ScienceDirect Journals Complete
title A search for forward scattering of sunlight from lunar libration clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20search%20for%20forward%20scattering%20of%20sunlight%20from%20lunar%20libration%20clouds&rft.jtitle=Planetary%20and%20space%20science&rft.au=Munro,%20R.H.&rft.date=1975-01-01&rft.volume=23&rft.issue=9&rft.spage=1313&rft.epage=1319&rft.pages=1313-1319&rft.issn=0032-0633&rft.eissn=1873-5088&rft_id=info:doi/10.1016/0032-0633(75)90155-5&rft_dat=%3Cproquest_cross%3E18468146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18468146&rft_id=info:pmid/&rft_els_id=0032063375901555&rfr_iscdi=true