A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes
The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopha...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2019-10, Vol.116 (10), p.2575-2586 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2586 |
---|---|
container_issue | 10 |
container_start_page | 2575 |
container_title | Biotechnology and bioengineering |
container_volume | 116 |
creator | Tulsyan, Aditya Schorner, Gregg Khodabandehlou, Hamid Wang, Tony Coufal, Myra Undey, Cenk |
description | The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before.
An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform. |
doi_str_mv | 10.1002/bit.27100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2246243367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284140533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</originalsourceid><addsrcrecordid>eNp1kc9KJDEQh8OyouPoYV9gCexFD-1Uku5056jiPxAE0XOTTle7kXRnNulG5uYj-Iw-iRnH9SB4SlJ8-aqoHyG_GBwxAL5o7HjEy3T9QWYMVJkBV_CTzABAZqJQfIfsxviYnmUl5TbZEYwLVio-I-Mx7bX5awd8fX5xqMNghweql8vgU5mOnhrtbBP0iPQBBwzW0Fvd64H2vkUXaecDDahd-j7aHlN5sKMPa4vvqEHnqJncOAWkyWkwRox7ZKvTLuL-xzkn9-dnd6eX2fXNxdXp8XVmhALIJJcMtEDOZCXyLm9NWYJpC6iKThXcIAhtWANKKYmFaJsmbzqpAFUpurwqxJwcbLyp878J41j3Nq5H0gP6Kdac55LnQsgyoX--oI9-CkOaLlFVznIohEjU4YYywccYsKuXwfY6rGoG9TqKOkVRv0eR2N8fxqnpsf0k_-8-AYsN8GQdrr431SdXdxvlGysJlFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284140533</pqid></control><display><type>article</type><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</creator><creatorcontrib>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</creatorcontrib><description>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before.
An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27100</identifier><identifier>PMID: 31231792</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Ammonium ; biopharmaceutical manufacturing ; Biopharmaceuticals ; Biotechnology ; Calcium ; Calibration ; Cell culture ; Cell density ; Cell lines ; Culture media ; generic models ; Glutamine ; Lactic acid ; Learning algorithms ; Machine learning ; Manufacturing ; Mathematical models ; Model accuracy ; Process parameters ; Raman spectroscopy ; Raw materials ; Sodium ; Spectroscopy ; Spectrum analysis ; Viability</subject><ispartof>Biotechnology and bioengineering, 2019-10, Vol.116 (10), p.2575-2586</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</citedby><cites>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31231792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tulsyan, Aditya</creatorcontrib><creatorcontrib>Schorner, Gregg</creatorcontrib><creatorcontrib>Khodabandehlou, Hamid</creatorcontrib><creatorcontrib>Wang, Tony</creatorcontrib><creatorcontrib>Coufal, Myra</creatorcontrib><creatorcontrib>Undey, Cenk</creatorcontrib><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before.
An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</description><subject>Ammonium</subject><subject>biopharmaceutical manufacturing</subject><subject>Biopharmaceuticals</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Calibration</subject><subject>Cell culture</subject><subject>Cell density</subject><subject>Cell lines</subject><subject>Culture media</subject><subject>generic models</subject><subject>Glutamine</subject><subject>Lactic acid</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Raw materials</subject><subject>Sodium</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Viability</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KJDEQh8OyouPoYV9gCexFD-1Uku5056jiPxAE0XOTTle7kXRnNulG5uYj-Iw-iRnH9SB4SlJ8-aqoHyG_GBwxAL5o7HjEy3T9QWYMVJkBV_CTzABAZqJQfIfsxviYnmUl5TbZEYwLVio-I-Mx7bX5awd8fX5xqMNghweql8vgU5mOnhrtbBP0iPQBBwzW0Fvd64H2vkUXaecDDahd-j7aHlN5sKMPa4vvqEHnqJncOAWkyWkwRox7ZKvTLuL-xzkn9-dnd6eX2fXNxdXp8XVmhALIJJcMtEDOZCXyLm9NWYJpC6iKThXcIAhtWANKKYmFaJsmbzqpAFUpurwqxJwcbLyp878J41j3Nq5H0gP6Kdac55LnQsgyoX--oI9-CkOaLlFVznIohEjU4YYywccYsKuXwfY6rGoG9TqKOkVRv0eR2N8fxqnpsf0k_-8-AYsN8GQdrr431SdXdxvlGysJlFA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Tulsyan, Aditya</creator><creator>Schorner, Gregg</creator><creator>Khodabandehlou, Hamid</creator><creator>Wang, Tony</creator><creator>Coufal, Myra</creator><creator>Undey, Cenk</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><author>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium</topic><topic>biopharmaceutical manufacturing</topic><topic>Biopharmaceuticals</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Calibration</topic><topic>Cell culture</topic><topic>Cell density</topic><topic>Cell lines</topic><topic>Culture media</topic><topic>generic models</topic><topic>Glutamine</topic><topic>Lactic acid</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Raw materials</topic><topic>Sodium</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tulsyan, Aditya</creatorcontrib><creatorcontrib>Schorner, Gregg</creatorcontrib><creatorcontrib>Khodabandehlou, Hamid</creatorcontrib><creatorcontrib>Wang, Tony</creatorcontrib><creatorcontrib>Coufal, Myra</creatorcontrib><creatorcontrib>Undey, Cenk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tulsyan, Aditya</au><au>Schorner, Gregg</au><au>Khodabandehlou, Hamid</au><au>Wang, Tony</au><au>Coufal, Myra</au><au>Undey, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-10</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>2575</spage><epage>2586</epage><pages>2575-2586</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before.
An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31231792</pmid><doi>10.1002/bit.27100</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2019-10, Vol.116 (10), p.2575-2586 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2246243367 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonium biopharmaceutical manufacturing Biopharmaceuticals Biotechnology Calcium Calibration Cell culture Cell density Cell lines Culture media generic models Glutamine Lactic acid Learning algorithms Machine learning Manufacturing Mathematical models Model accuracy Process parameters Raman spectroscopy Raw materials Sodium Spectroscopy Spectrum analysis Viability |
title | A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%E2%80%90learning%20approach%20to%20calibrate%20generic%20Raman%20models%20for%20real%E2%80%90time%20monitoring%20of%20cell%20culture%20processes&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Tulsyan,%20Aditya&rft.date=2019-10&rft.volume=116&rft.issue=10&rft.spage=2575&rft.epage=2586&rft.pages=2575-2586&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27100&rft_dat=%3Cproquest_cross%3E2284140533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284140533&rft_id=info:pmid/31231792&rfr_iscdi=true |