A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes

The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2019-10, Vol.116 (10), p.2575-2586
Hauptverfasser: Tulsyan, Aditya, Schorner, Gregg, Khodabandehlou, Hamid, Wang, Tony, Coufal, Myra, Undey, Cenk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2586
container_issue 10
container_start_page 2575
container_title Biotechnology and bioengineering
container_volume 116
creator Tulsyan, Aditya
Schorner, Gregg
Khodabandehlou, Hamid
Wang, Tony
Coufal, Myra
Undey, Cenk
description The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before. An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.
doi_str_mv 10.1002/bit.27100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2246243367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284140533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</originalsourceid><addsrcrecordid>eNp1kc9KJDEQh8OyouPoYV9gCexFD-1Uku5056jiPxAE0XOTTle7kXRnNulG5uYj-Iw-iRnH9SB4SlJ8-aqoHyG_GBwxAL5o7HjEy3T9QWYMVJkBV_CTzABAZqJQfIfsxviYnmUl5TbZEYwLVio-I-Mx7bX5awd8fX5xqMNghweql8vgU5mOnhrtbBP0iPQBBwzW0Fvd64H2vkUXaecDDahd-j7aHlN5sKMPa4vvqEHnqJncOAWkyWkwRox7ZKvTLuL-xzkn9-dnd6eX2fXNxdXp8XVmhALIJJcMtEDOZCXyLm9NWYJpC6iKThXcIAhtWANKKYmFaJsmbzqpAFUpurwqxJwcbLyp878J41j3Nq5H0gP6Kdac55LnQsgyoX--oI9-CkOaLlFVznIohEjU4YYywccYsKuXwfY6rGoG9TqKOkVRv0eR2N8fxqnpsf0k_-8-AYsN8GQdrr431SdXdxvlGysJlFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284140533</pqid></control><display><type>article</type><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</creator><creatorcontrib>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</creatorcontrib><description>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before. An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27100</identifier><identifier>PMID: 31231792</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Ammonium ; biopharmaceutical manufacturing ; Biopharmaceuticals ; Biotechnology ; Calcium ; Calibration ; Cell culture ; Cell density ; Cell lines ; Culture media ; generic models ; Glutamine ; Lactic acid ; Learning algorithms ; Machine learning ; Manufacturing ; Mathematical models ; Model accuracy ; Process parameters ; Raman spectroscopy ; Raw materials ; Sodium ; Spectroscopy ; Spectrum analysis ; Viability</subject><ispartof>Biotechnology and bioengineering, 2019-10, Vol.116 (10), p.2575-2586</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</citedby><cites>FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31231792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tulsyan, Aditya</creatorcontrib><creatorcontrib>Schorner, Gregg</creatorcontrib><creatorcontrib>Khodabandehlou, Hamid</creatorcontrib><creatorcontrib>Wang, Tony</creatorcontrib><creatorcontrib>Coufal, Myra</creatorcontrib><creatorcontrib>Undey, Cenk</creatorcontrib><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before. An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</description><subject>Ammonium</subject><subject>biopharmaceutical manufacturing</subject><subject>Biopharmaceuticals</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Calibration</subject><subject>Cell culture</subject><subject>Cell density</subject><subject>Cell lines</subject><subject>Culture media</subject><subject>generic models</subject><subject>Glutamine</subject><subject>Lactic acid</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Raw materials</subject><subject>Sodium</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Viability</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KJDEQh8OyouPoYV9gCexFD-1Uku5056jiPxAE0XOTTle7kXRnNulG5uYj-Iw-iRnH9SB4SlJ8-aqoHyG_GBwxAL5o7HjEy3T9QWYMVJkBV_CTzABAZqJQfIfsxviYnmUl5TbZEYwLVio-I-Mx7bX5awd8fX5xqMNghweql8vgU5mOnhrtbBP0iPQBBwzW0Fvd64H2vkUXaecDDahd-j7aHlN5sKMPa4vvqEHnqJncOAWkyWkwRox7ZKvTLuL-xzkn9-dnd6eX2fXNxdXp8XVmhALIJJcMtEDOZCXyLm9NWYJpC6iKThXcIAhtWANKKYmFaJsmbzqpAFUpurwqxJwcbLyp878J41j3Nq5H0gP6Kdac55LnQsgyoX--oI9-CkOaLlFVznIohEjU4YYywccYsKuXwfY6rGoG9TqKOkVRv0eR2N8fxqnpsf0k_-8-AYsN8GQdrr431SdXdxvlGysJlFA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Tulsyan, Aditya</creator><creator>Schorner, Gregg</creator><creator>Khodabandehlou, Hamid</creator><creator>Wang, Tony</creator><creator>Coufal, Myra</creator><creator>Undey, Cenk</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</title><author>Tulsyan, Aditya ; Schorner, Gregg ; Khodabandehlou, Hamid ; Wang, Tony ; Coufal, Myra ; Undey, Cenk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-62610a3e216834f4dc770cd5085f952ce03ac1b09996e53dbb4bf690e973f4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium</topic><topic>biopharmaceutical manufacturing</topic><topic>Biopharmaceuticals</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Calibration</topic><topic>Cell culture</topic><topic>Cell density</topic><topic>Cell lines</topic><topic>Culture media</topic><topic>generic models</topic><topic>Glutamine</topic><topic>Lactic acid</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Raw materials</topic><topic>Sodium</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tulsyan, Aditya</creatorcontrib><creatorcontrib>Schorner, Gregg</creatorcontrib><creatorcontrib>Khodabandehlou, Hamid</creatorcontrib><creatorcontrib>Wang, Tony</creatorcontrib><creatorcontrib>Coufal, Myra</creatorcontrib><creatorcontrib>Undey, Cenk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tulsyan, Aditya</au><au>Schorner, Gregg</au><au>Khodabandehlou, Hamid</au><au>Wang, Tony</au><au>Coufal, Myra</au><au>Undey, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-10</date><risdate>2019</risdate><volume>116</volume><issue>10</issue><spage>2575</spage><epage>2586</epage><pages>2575-2586</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real‐time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine‐learning procedure based on just‐in‐time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL‐based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL‐based generic models is demonstrated on several validation studies involving real‐time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors’ knowledge have not been done before. An illustration of the procedure for calibrating generic Raman models using Just‐in‐time learning (JITL) platform.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31231792</pmid><doi>10.1002/bit.27100</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2019-10, Vol.116 (10), p.2575-2586
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2246243367
source Wiley Online Library Journals Frontfile Complete
subjects Ammonium
biopharmaceutical manufacturing
Biopharmaceuticals
Biotechnology
Calcium
Calibration
Cell culture
Cell density
Cell lines
Culture media
generic models
Glutamine
Lactic acid
Learning algorithms
Machine learning
Manufacturing
Mathematical models
Model accuracy
Process parameters
Raman spectroscopy
Raw materials
Sodium
Spectroscopy
Spectrum analysis
Viability
title A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%E2%80%90learning%20approach%20to%20calibrate%20generic%20Raman%20models%20for%20real%E2%80%90time%20monitoring%20of%20cell%20culture%20processes&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Tulsyan,%20Aditya&rft.date=2019-10&rft.volume=116&rft.issue=10&rft.spage=2575&rft.epage=2586&rft.pages=2575-2586&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27100&rft_dat=%3Cproquest_cross%3E2284140533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284140533&rft_id=info:pmid/31231792&rfr_iscdi=true