Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers

Purpose To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human reader...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neuroradiology (Munich) 2020-09, Vol.30 (3), p.591-598
Hauptverfasser: Faron, Anton, Sichtermann, Thorsten, Teichert, Nikolas, Luetkens, Julian A., Keulers, Annika, Nikoubashman, Omid, Freiherr, Jessica, Mpotsaris, Anastasios, Wiesmann, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 3
container_start_page 591
container_title Clinical neuroradiology (Munich)
container_volume 30
creator Faron, Anton
Sichtermann, Thorsten
Teichert, Nikolas
Luetkens, Julian A.
Keulers, Annika
Nikoubashman, Omid
Freiherr, Jessica
Mpotsaris, Anastasios
Wiesmann, Martin
description Purpose To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human readers. Methods In this retrospective study a pipeline for detection of intracranial aneurysms from clinical TOF-MRA was established based on the framework DeepMedic. Datasets of 85 consecutive patients served as ground truth and were used to train and evaluate the model. The ground truth without annotation was presented to two blinded human readers with different levels of experience in diagnostic neuroradiology (reader 1: 2 years, reader 2: 12 years). Diagnostic performance of human readers and the CNN was studied and compared using the χ 2 -test and Fishers’ exact test. Results Ground truth consisted of 115 aneurysms with a mean diameter of 7 mm (range: 2–37 mm). Aneurysms were categorized as small (S; 7 mm; N  = 45) based on the diameter. No statistically significant differences in terms of overall sensitivity (OS) were observed between the CNN and both of the human readers (reader 1 vs. CNN, P  = 0.141; reader 2 vs. CNN, P  = 0.231). The OS of both human readers was improved by combination of each readers’ individual detections with the detections of the CNN (reader 1: 98% vs. 95%, P  = 0.280; reader 2: 97% vs. 94%, P  = 0.333). Conclusion A CNN is able to detect intracranial aneurysms from clinical TOF-MRA data with a sensitivity comparable to that of expert radiologists and may have the potential to improve detection rates of incidental findings in a clinical setting.
doi_str_mv 10.1007/s00062-019-00809-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245644027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718267888</galeid><sourcerecordid>A718267888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-e7ae63853ce18256bf3c488798cd3a59820fd1ba7202d42d729fc1de500012293</originalsourceid><addsrcrecordid>eNp9kc9O3DAQxqOqCBDwAhwqS730Euo_SewcV7ulIG0LQnC2vM54FZrYWzvRij4Nz8KTddKloFZV7cNYnt83nvGXZaeMnjFK5cdEKa14TlmdU6ponW_fZIdMVXXOikK-fTmL-iA7SekecSpUXZZyPzsQjHOpiuIw-3EN0YXYG2-BBEfM0-MCYJMvwUTf-jX5CmM0HYZhG-I3MgSygAHsQC79EI2NxreYnnnEHlKfiIuhJ2Lx9Hh7dZ5_uZmReeg3JkIzSS9GfIjcgGkgpuNsz5kuwclzPMruzj_dzi_y5dXny_lsmduSqiEHaaASqhQWmOJltXLCFkrJWtlGmLJWnLqGrYzklDcFbySvnWUNlDgwjlmLo-zDru4mhu8jpEH3bbLQdcZDGJPmvCiroqBcIvr-L_Q-jNFjdxOFCxn6Sq1NB7r1Lkw_MRXVM4k9VlIphdTZPyjcDfStDR5ci_d_CPhOYGNIKYLTm9j2Jj5oRvXkud55rtFz_ctzvUXRu-eOx1UPzYvkt8MIiB2QMOXXEF9H-k_Zn2BvtZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244442730</pqid></control><display><type>article</type><title>Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers</title><source>Springer Nature - Complete Springer Journals</source><creator>Faron, Anton ; Sichtermann, Thorsten ; Teichert, Nikolas ; Luetkens, Julian A. ; Keulers, Annika ; Nikoubashman, Omid ; Freiherr, Jessica ; Mpotsaris, Anastasios ; Wiesmann, Martin</creator><creatorcontrib>Faron, Anton ; Sichtermann, Thorsten ; Teichert, Nikolas ; Luetkens, Julian A. ; Keulers, Annika ; Nikoubashman, Omid ; Freiherr, Jessica ; Mpotsaris, Anastasios ; Wiesmann, Martin</creatorcontrib><description>Purpose To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human readers. Methods In this retrospective study a pipeline for detection of intracranial aneurysms from clinical TOF-MRA was established based on the framework DeepMedic. Datasets of 85 consecutive patients served as ground truth and were used to train and evaluate the model. The ground truth without annotation was presented to two blinded human readers with different levels of experience in diagnostic neuroradiology (reader 1: 2 years, reader 2: 12 years). Diagnostic performance of human readers and the CNN was studied and compared using the χ 2 -test and Fishers’ exact test. Results Ground truth consisted of 115 aneurysms with a mean diameter of 7 mm (range: 2–37 mm). Aneurysms were categorized as small (S; &lt;3 mm; N  = 13), medium (M; 3–7 mm; N  = 57), and large (L; &gt;7 mm; N  = 45) based on the diameter. No statistically significant differences in terms of overall sensitivity (OS) were observed between the CNN and both of the human readers (reader 1 vs. CNN, P  = 0.141; reader 2 vs. CNN, P  = 0.231). The OS of both human readers was improved by combination of each readers’ individual detections with the detections of the CNN (reader 1: 98% vs. 95%, P  = 0.280; reader 2: 97% vs. 94%, P  = 0.333). Conclusion A CNN is able to detect intracranial aneurysms from clinical TOF-MRA data with a sensitivity comparable to that of expert radiologists and may have the potential to improve detection rates of incidental findings in a clinical setting.</description><identifier>ISSN: 1869-1439</identifier><identifier>EISSN: 1869-1447</identifier><identifier>DOI: 10.1007/s00062-019-00809-w</identifier><identifier>PMID: 31227844</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aneurysms ; Comparative analysis ; Electrocardiography ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neurology ; Neuroradiology ; Neurosurgery ; Original Article</subject><ispartof>Clinical neuroradiology (Munich), 2020-09, Vol.30 (3), p.591-598</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-e7ae63853ce18256bf3c488798cd3a59820fd1ba7202d42d729fc1de500012293</citedby><cites>FETCH-LOGICAL-c508t-e7ae63853ce18256bf3c488798cd3a59820fd1ba7202d42d729fc1de500012293</cites><orcidid>0000-0002-5771-7235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00062-019-00809-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00062-019-00809-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31227844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faron, Anton</creatorcontrib><creatorcontrib>Sichtermann, Thorsten</creatorcontrib><creatorcontrib>Teichert, Nikolas</creatorcontrib><creatorcontrib>Luetkens, Julian A.</creatorcontrib><creatorcontrib>Keulers, Annika</creatorcontrib><creatorcontrib>Nikoubashman, Omid</creatorcontrib><creatorcontrib>Freiherr, Jessica</creatorcontrib><creatorcontrib>Mpotsaris, Anastasios</creatorcontrib><creatorcontrib>Wiesmann, Martin</creatorcontrib><title>Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers</title><title>Clinical neuroradiology (Munich)</title><addtitle>Clin Neuroradiol</addtitle><addtitle>Clin Neuroradiol</addtitle><description>Purpose To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human readers. Methods In this retrospective study a pipeline for detection of intracranial aneurysms from clinical TOF-MRA was established based on the framework DeepMedic. Datasets of 85 consecutive patients served as ground truth and were used to train and evaluate the model. The ground truth without annotation was presented to two blinded human readers with different levels of experience in diagnostic neuroradiology (reader 1: 2 years, reader 2: 12 years). Diagnostic performance of human readers and the CNN was studied and compared using the χ 2 -test and Fishers’ exact test. Results Ground truth consisted of 115 aneurysms with a mean diameter of 7 mm (range: 2–37 mm). Aneurysms were categorized as small (S; &lt;3 mm; N  = 13), medium (M; 3–7 mm; N  = 57), and large (L; &gt;7 mm; N  = 45) based on the diameter. No statistically significant differences in terms of overall sensitivity (OS) were observed between the CNN and both of the human readers (reader 1 vs. CNN, P  = 0.141; reader 2 vs. CNN, P  = 0.231). The OS of both human readers was improved by combination of each readers’ individual detections with the detections of the CNN (reader 1: 98% vs. 95%, P  = 0.280; reader 2: 97% vs. 94%, P  = 0.333). Conclusion A CNN is able to detect intracranial aneurysms from clinical TOF-MRA data with a sensitivity comparable to that of expert radiologists and may have the potential to improve detection rates of incidental findings in a clinical setting.</description><subject>Aneurysms</subject><subject>Comparative analysis</subject><subject>Electrocardiography</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosurgery</subject><subject>Original Article</subject><issn>1869-1439</issn><issn>1869-1447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kc9O3DAQxqOqCBDwAhwqS730Euo_SewcV7ulIG0LQnC2vM54FZrYWzvRij4Nz8KTddKloFZV7cNYnt83nvGXZaeMnjFK5cdEKa14TlmdU6ponW_fZIdMVXXOikK-fTmL-iA7SekecSpUXZZyPzsQjHOpiuIw-3EN0YXYG2-BBEfM0-MCYJMvwUTf-jX5CmM0HYZhG-I3MgSygAHsQC79EI2NxreYnnnEHlKfiIuhJ2Lx9Hh7dZ5_uZmReeg3JkIzSS9GfIjcgGkgpuNsz5kuwclzPMruzj_dzi_y5dXny_lsmduSqiEHaaASqhQWmOJltXLCFkrJWtlGmLJWnLqGrYzklDcFbySvnWUNlDgwjlmLo-zDru4mhu8jpEH3bbLQdcZDGJPmvCiroqBcIvr-L_Q-jNFjdxOFCxn6Sq1NB7r1Lkw_MRXVM4k9VlIphdTZPyjcDfStDR5ci_d_CPhOYGNIKYLTm9j2Jj5oRvXkud55rtFz_ctzvUXRu-eOx1UPzYvkt8MIiB2QMOXXEF9H-k_Zn2BvtZ0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Faron, Anton</creator><creator>Sichtermann, Thorsten</creator><creator>Teichert, Nikolas</creator><creator>Luetkens, Julian A.</creator><creator>Keulers, Annika</creator><creator>Nikoubashman, Omid</creator><creator>Freiherr, Jessica</creator><creator>Mpotsaris, Anastasios</creator><creator>Wiesmann, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5771-7235</orcidid></search><sort><creationdate>20200901</creationdate><title>Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers</title><author>Faron, Anton ; Sichtermann, Thorsten ; Teichert, Nikolas ; Luetkens, Julian A. ; Keulers, Annika ; Nikoubashman, Omid ; Freiherr, Jessica ; Mpotsaris, Anastasios ; Wiesmann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-e7ae63853ce18256bf3c488798cd3a59820fd1ba7202d42d729fc1de500012293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aneurysms</topic><topic>Comparative analysis</topic><topic>Electrocardiography</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosurgery</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faron, Anton</creatorcontrib><creatorcontrib>Sichtermann, Thorsten</creatorcontrib><creatorcontrib>Teichert, Nikolas</creatorcontrib><creatorcontrib>Luetkens, Julian A.</creatorcontrib><creatorcontrib>Keulers, Annika</creatorcontrib><creatorcontrib>Nikoubashman, Omid</creatorcontrib><creatorcontrib>Freiherr, Jessica</creatorcontrib><creatorcontrib>Mpotsaris, Anastasios</creatorcontrib><creatorcontrib>Wiesmann, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neuroradiology (Munich)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faron, Anton</au><au>Sichtermann, Thorsten</au><au>Teichert, Nikolas</au><au>Luetkens, Julian A.</au><au>Keulers, Annika</au><au>Nikoubashman, Omid</au><au>Freiherr, Jessica</au><au>Mpotsaris, Anastasios</au><au>Wiesmann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers</atitle><jtitle>Clinical neuroradiology (Munich)</jtitle><stitle>Clin Neuroradiol</stitle><addtitle>Clin Neuroradiol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>3</issue><spage>591</spage><epage>598</epage><pages>591-598</pages><issn>1869-1439</issn><eissn>1869-1447</eissn><abstract>Purpose To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human readers. Methods In this retrospective study a pipeline for detection of intracranial aneurysms from clinical TOF-MRA was established based on the framework DeepMedic. Datasets of 85 consecutive patients served as ground truth and were used to train and evaluate the model. The ground truth without annotation was presented to two blinded human readers with different levels of experience in diagnostic neuroradiology (reader 1: 2 years, reader 2: 12 years). Diagnostic performance of human readers and the CNN was studied and compared using the χ 2 -test and Fishers’ exact test. Results Ground truth consisted of 115 aneurysms with a mean diameter of 7 mm (range: 2–37 mm). Aneurysms were categorized as small (S; &lt;3 mm; N  = 13), medium (M; 3–7 mm; N  = 57), and large (L; &gt;7 mm; N  = 45) based on the diameter. No statistically significant differences in terms of overall sensitivity (OS) were observed between the CNN and both of the human readers (reader 1 vs. CNN, P  = 0.141; reader 2 vs. CNN, P  = 0.231). The OS of both human readers was improved by combination of each readers’ individual detections with the detections of the CNN (reader 1: 98% vs. 95%, P  = 0.280; reader 2: 97% vs. 94%, P  = 0.333). Conclusion A CNN is able to detect intracranial aneurysms from clinical TOF-MRA data with a sensitivity comparable to that of expert radiologists and may have the potential to improve detection rates of incidental findings in a clinical setting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31227844</pmid><doi>10.1007/s00062-019-00809-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5771-7235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1869-1439
ispartof Clinical neuroradiology (Munich), 2020-09, Vol.30 (3), p.591-598
issn 1869-1439
1869-1447
language eng
recordid cdi_proquest_miscellaneous_2245644027
source Springer Nature - Complete Springer Journals
subjects Aneurysms
Comparative analysis
Electrocardiography
Medicine
Medicine & Public Health
Neural networks
Neurology
Neuroradiology
Neurosurgery
Original Article
title Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20a%C2%A0Deep-Learning%20Neural%20Network%20to%20Detect%20Intracranial%20Aneurysms%20from%203D%C2%A0TOF-MRA%20Compared%20to%20Human%20Readers&rft.jtitle=Clinical%20neuroradiology%20(Munich)&rft.au=Faron,%20Anton&rft.date=2020-09-01&rft.volume=30&rft.issue=3&rft.spage=591&rft.epage=598&rft.pages=591-598&rft.issn=1869-1439&rft.eissn=1869-1447&rft_id=info:doi/10.1007/s00062-019-00809-w&rft_dat=%3Cgale_proqu%3EA718267888%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244442730&rft_id=info:pmid/31227844&rft_galeid=A718267888&rfr_iscdi=true