In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis
Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-04, Vol.108 (3), p.790-797 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 797 |
---|---|
container_issue | 3 |
container_start_page | 790 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 108 |
creator | Luo, Jing‐Wan Liu, Chang Wu, Jing‐Heng Zhao, Dan‐Hui Lin, Long‐Xiang Fan, Hai‐Ming Sun, Yu‐Long |
description | Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat. |
doi_str_mv | 10.1002/jbm.b.34433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245643847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369832126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</originalsourceid><addsrcrecordid>eNp90MtLAzEQBvAgiq3Vk3dZ8CLItptJ9nW0xUelIoiew-zutE3ZR012kf73prb24MFTAvObj-Fj7JIHQx4EMFpl1TAbCimFOGJ9HobgyzThx4d_LHrszNqVw1EQilPWExwgjFLZZ2_T2rO67bx5YypdL7wFldjqerTcYNmZpta5h7kuvOWmMI0bbqHXams78ixhud3B2s2pamyLVttzdjLH0tLF_h2wj4f798mTP3t9nE7uZn4u3Ek-gigkSEzDwh2WkogSzpEKzIgEJ4jSkKOE3GkeA0kEHiBlSYIihFiSGLCbXe7aNJ8d2VZV2uZUllhT01kFIMNIikTGjl7_oaumM7W7ToGI0kQAh8ip253KTWOtoblaG12h2SgeqG3VylWtMvVTtdNX-8wuq6g42N9uHYAd-NIlbf7LUs_jl_Eu9RvBV4iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369832126</pqid></control><display><type>article</type><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><source>Wiley Online Library All Journals</source><creator>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</creator><creatorcontrib>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</creatorcontrib><description>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34433</identifier><identifier>PMID: 31225694</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; chemical crosslinking ; Crosslinking ; Fibrin ; fibrin glue ; Fourier analysis ; Fourier transforms ; Gelatin ; Hemostasis ; Hemostatics ; Hyaluronic acid ; Hydrogels ; Infrared analysis ; Infrared spectroscopy ; injectable hydrogel ; Materials research ; Materials science ; Mechanical properties ; Organic chemistry ; Proteolysis ; Rheological properties ; Sealants ; Sealing ; tissue sealing ; Tissues ; Trypsin</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.790-797</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</citedby><cites>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31225694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Jing‐Wan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wu, Jing‐Heng</creatorcontrib><creatorcontrib>Zhao, Dan‐Hui</creatorcontrib><creatorcontrib>Lin, Long‐Xiang</creatorcontrib><creatorcontrib>Fan, Hai‐Ming</creatorcontrib><creatorcontrib>Sun, Yu‐Long</creatorcontrib><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>chemical crosslinking</subject><subject>Crosslinking</subject><subject>Fibrin</subject><subject>fibrin glue</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gelatin</subject><subject>Hemostasis</subject><subject>Hemostatics</subject><subject>Hyaluronic acid</subject><subject>Hydrogels</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>injectable hydrogel</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Organic chemistry</subject><subject>Proteolysis</subject><subject>Rheological properties</subject><subject>Sealants</subject><subject>Sealing</subject><subject>tissue sealing</subject><subject>Tissues</subject><subject>Trypsin</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtLAzEQBvAgiq3Vk3dZ8CLItptJ9nW0xUelIoiew-zutE3ZR012kf73prb24MFTAvObj-Fj7JIHQx4EMFpl1TAbCimFOGJ9HobgyzThx4d_LHrszNqVw1EQilPWExwgjFLZZ2_T2rO67bx5YypdL7wFldjqerTcYNmZpta5h7kuvOWmMI0bbqHXams78ixhud3B2s2pamyLVttzdjLH0tLF_h2wj4f798mTP3t9nE7uZn4u3Ek-gigkSEzDwh2WkogSzpEKzIgEJ4jSkKOE3GkeA0kEHiBlSYIihFiSGLCbXe7aNJ8d2VZV2uZUllhT01kFIMNIikTGjl7_oaumM7W7ToGI0kQAh8ip253KTWOtoblaG12h2SgeqG3VylWtMvVTtdNX-8wuq6g42N9uHYAd-NIlbf7LUs_jl_Eu9RvBV4iw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Luo, Jing‐Wan</creator><creator>Liu, Chang</creator><creator>Wu, Jing‐Heng</creator><creator>Zhao, Dan‐Hui</creator><creator>Lin, Long‐Xiang</creator><creator>Fan, Hai‐Ming</creator><creator>Sun, Yu‐Long</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202004</creationdate><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><author>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>chemical crosslinking</topic><topic>Crosslinking</topic><topic>Fibrin</topic><topic>fibrin glue</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gelatin</topic><topic>Hemostasis</topic><topic>Hemostatics</topic><topic>Hyaluronic acid</topic><topic>Hydrogels</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>injectable hydrogel</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Organic chemistry</topic><topic>Proteolysis</topic><topic>Rheological properties</topic><topic>Sealants</topic><topic>Sealing</topic><topic>tissue sealing</topic><topic>Tissues</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jing‐Wan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wu, Jing‐Heng</creatorcontrib><creatorcontrib>Zhao, Dan‐Hui</creatorcontrib><creatorcontrib>Lin, Long‐Xiang</creatorcontrib><creatorcontrib>Fan, Hai‐Ming</creatorcontrib><creatorcontrib>Sun, Yu‐Long</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jing‐Wan</au><au>Liu, Chang</au><au>Wu, Jing‐Heng</au><au>Zhao, Dan‐Hui</au><au>Lin, Long‐Xiang</au><au>Fan, Hai‐Ming</au><au>Sun, Yu‐Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-04</date><risdate>2020</risdate><volume>108</volume><issue>3</issue><spage>790</spage><epage>797</epage><pages>790-797</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31225694</pmid><doi>10.1002/jbm.b.34433</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.790-797 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2245643847 |
source | Wiley Online Library All Journals |
subjects | Biocompatibility Biomedical materials chemical crosslinking Crosslinking Fibrin fibrin glue Fourier analysis Fourier transforms Gelatin Hemostasis Hemostatics Hyaluronic acid Hydrogels Infrared analysis Infrared spectroscopy injectable hydrogel Materials research Materials science Mechanical properties Organic chemistry Proteolysis Rheological properties Sealants Sealing tissue sealing Tissues Trypsin |
title | In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20forming%20gelatin/hyaluronic%20acid%20hydrogel%20for%20tissue%20sealing%20and%20hemostasis&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Luo,%20Jing%E2%80%90Wan&rft.date=2020-04&rft.volume=108&rft.issue=3&rft.spage=790&rft.epage=797&rft.pages=790-797&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34433&rft_dat=%3Cproquest_cross%3E2369832126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369832126&rft_id=info:pmid/31225694&rfr_iscdi=true |