In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis

Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-04, Vol.108 (3), p.790-797
Hauptverfasser: Luo, Jing‐Wan, Liu, Chang, Wu, Jing‐Heng, Zhao, Dan‐Hui, Lin, Long‐Xiang, Fan, Hai‐Ming, Sun, Yu‐Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 797
container_issue 3
container_start_page 790
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Luo, Jing‐Wan
Liu, Chang
Wu, Jing‐Heng
Zhao, Dan‐Hui
Lin, Long‐Xiang
Fan, Hai‐Ming
Sun, Yu‐Long
description Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.
doi_str_mv 10.1002/jbm.b.34433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245643847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369832126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</originalsourceid><addsrcrecordid>eNp90MtLAzEQBvAgiq3Vk3dZ8CLItptJ9nW0xUelIoiew-zutE3ZR012kf73prb24MFTAvObj-Fj7JIHQx4EMFpl1TAbCimFOGJ9HobgyzThx4d_LHrszNqVw1EQilPWExwgjFLZZ2_T2rO67bx5YypdL7wFldjqerTcYNmZpta5h7kuvOWmMI0bbqHXams78ixhud3B2s2pamyLVttzdjLH0tLF_h2wj4f798mTP3t9nE7uZn4u3Ek-gigkSEzDwh2WkogSzpEKzIgEJ4jSkKOE3GkeA0kEHiBlSYIihFiSGLCbXe7aNJ8d2VZV2uZUllhT01kFIMNIikTGjl7_oaumM7W7ToGI0kQAh8ip253KTWOtoblaG12h2SgeqG3VylWtMvVTtdNX-8wuq6g42N9uHYAd-NIlbf7LUs_jl_Eu9RvBV4iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369832126</pqid></control><display><type>article</type><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><source>Wiley Online Library All Journals</source><creator>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</creator><creatorcontrib>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</creatorcontrib><description>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34433</identifier><identifier>PMID: 31225694</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; chemical crosslinking ; Crosslinking ; Fibrin ; fibrin glue ; Fourier analysis ; Fourier transforms ; Gelatin ; Hemostasis ; Hemostatics ; Hyaluronic acid ; Hydrogels ; Infrared analysis ; Infrared spectroscopy ; injectable hydrogel ; Materials research ; Materials science ; Mechanical properties ; Organic chemistry ; Proteolysis ; Rheological properties ; Sealants ; Sealing ; tissue sealing ; Tissues ; Trypsin</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.790-797</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</citedby><cites>FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31225694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Jing‐Wan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wu, Jing‐Heng</creatorcontrib><creatorcontrib>Zhao, Dan‐Hui</creatorcontrib><creatorcontrib>Lin, Long‐Xiang</creatorcontrib><creatorcontrib>Fan, Hai‐Ming</creatorcontrib><creatorcontrib>Sun, Yu‐Long</creatorcontrib><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>chemical crosslinking</subject><subject>Crosslinking</subject><subject>Fibrin</subject><subject>fibrin glue</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gelatin</subject><subject>Hemostasis</subject><subject>Hemostatics</subject><subject>Hyaluronic acid</subject><subject>Hydrogels</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>injectable hydrogel</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Organic chemistry</subject><subject>Proteolysis</subject><subject>Rheological properties</subject><subject>Sealants</subject><subject>Sealing</subject><subject>tissue sealing</subject><subject>Tissues</subject><subject>Trypsin</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtLAzEQBvAgiq3Vk3dZ8CLItptJ9nW0xUelIoiew-zutE3ZR012kf73prb24MFTAvObj-Fj7JIHQx4EMFpl1TAbCimFOGJ9HobgyzThx4d_LHrszNqVw1EQilPWExwgjFLZZ2_T2rO67bx5YypdL7wFldjqerTcYNmZpta5h7kuvOWmMI0bbqHXams78ixhud3B2s2pamyLVttzdjLH0tLF_h2wj4f798mTP3t9nE7uZn4u3Ek-gigkSEzDwh2WkogSzpEKzIgEJ4jSkKOE3GkeA0kEHiBlSYIihFiSGLCbXe7aNJ8d2VZV2uZUllhT01kFIMNIikTGjl7_oaumM7W7ToGI0kQAh8ip253KTWOtoblaG12h2SgeqG3VylWtMvVTtdNX-8wuq6g42N9uHYAd-NIlbf7LUs_jl_Eu9RvBV4iw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Luo, Jing‐Wan</creator><creator>Liu, Chang</creator><creator>Wu, Jing‐Heng</creator><creator>Zhao, Dan‐Hui</creator><creator>Lin, Long‐Xiang</creator><creator>Fan, Hai‐Ming</creator><creator>Sun, Yu‐Long</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202004</creationdate><title>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</title><author>Luo, Jing‐Wan ; Liu, Chang ; Wu, Jing‐Heng ; Zhao, Dan‐Hui ; Lin, Long‐Xiang ; Fan, Hai‐Ming ; Sun, Yu‐Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3973-a23d424a95d0029e36811aedabee31e26951a42cc39172e4a210aeb88a35274e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>chemical crosslinking</topic><topic>Crosslinking</topic><topic>Fibrin</topic><topic>fibrin glue</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gelatin</topic><topic>Hemostasis</topic><topic>Hemostatics</topic><topic>Hyaluronic acid</topic><topic>Hydrogels</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>injectable hydrogel</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Organic chemistry</topic><topic>Proteolysis</topic><topic>Rheological properties</topic><topic>Sealants</topic><topic>Sealing</topic><topic>tissue sealing</topic><topic>Tissues</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jing‐Wan</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wu, Jing‐Heng</creatorcontrib><creatorcontrib>Zhao, Dan‐Hui</creatorcontrib><creatorcontrib>Lin, Long‐Xiang</creatorcontrib><creatorcontrib>Fan, Hai‐Ming</creatorcontrib><creatorcontrib>Sun, Yu‐Long</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jing‐Wan</au><au>Liu, Chang</au><au>Wu, Jing‐Heng</au><au>Zhao, Dan‐Hui</au><au>Lin, Long‐Xiang</au><au>Fan, Hai‐Ming</au><au>Sun, Yu‐Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-04</date><risdate>2020</risdate><volume>108</volume><issue>3</issue><spage>790</spage><epage>797</epage><pages>790-797</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Fibrin glue has been widely used as a surgical sealing and hemostatic agent. Its application is restricted due to poor tissue adhesion and low mechanical strength. To develop better tissue sealant and hemostatic agent, this study prepared the injectable hydrogels by chemically cross‐linking gelatin (G) with or without hyaluronic acid (HA) in situ at a mild condition. The rheological analysis, Fourier transform infrared spectroscopy, swelling, proteolytic degradation, biocompatibility, tissue sealing, and hemostatic ability of the hydrogels were investigated. It was found that the chemical cross‐linking rapidly formed in both self‐crosslinking gelatin (sc‐G) and gelatin/hyaluronate acid (G/HA) hydrogels. The hydrogels could be degraded by trypsin and had a desirable biocompatibility. The tissue sealing ability of the hydrogels was superior to fibrin glue. Furthermore, the G/HA hydrogel had similar hemostatic performance as fibrin glue, and was better than that of gelatin hydrogel. The results in the study indicated that the G/HA hydrogel could be used in clinic as a tissue sealant or surgical hemostat.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31225694</pmid><doi>10.1002/jbm.b.34433</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.790-797
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2245643847
source Wiley Online Library All Journals
subjects Biocompatibility
Biomedical materials
chemical crosslinking
Crosslinking
Fibrin
fibrin glue
Fourier analysis
Fourier transforms
Gelatin
Hemostasis
Hemostatics
Hyaluronic acid
Hydrogels
Infrared analysis
Infrared spectroscopy
injectable hydrogel
Materials research
Materials science
Mechanical properties
Organic chemistry
Proteolysis
Rheological properties
Sealants
Sealing
tissue sealing
Tissues
Trypsin
title In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20forming%20gelatin/hyaluronic%20acid%20hydrogel%20for%20tissue%20sealing%20and%20hemostasis&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Luo,%20Jing%E2%80%90Wan&rft.date=2020-04&rft.volume=108&rft.issue=3&rft.spage=790&rft.epage=797&rft.pages=790-797&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34433&rft_dat=%3Cproquest_cross%3E2369832126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369832126&rft_id=info:pmid/31225694&rfr_iscdi=true