Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer
Starch films are gaining attention as substitutes of synthetic polymers due to their biodegradability and low cost. Some ionic liquids have been postulated as alternatives to glycerol, one of the best starch plasticizers, due to their great capacity to form hydrogen bonds with starch and hence great...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2019-08, Vol.135, p.845-854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Starch films are gaining attention as substitutes of synthetic polymers due to their biodegradability and low cost. Some ionic liquids have been postulated as alternatives to glycerol, one of the best starch plasticizers, due to their great capacity to form hydrogen bonds with starch and hence great ability of preventing starch retrogradation and increasing film stability. In this work, [emim+][Ac−]-plasticized starch films were prepared from potato, corn and wheat starch. The effect of starch molecular structure in terms of granular composition (amylose and phosphate monoester contents) and molecular weight (Mw) on film properties was evaluated. Potato starch films were the most amorphous because of the higher Mw and phosphate monoester content of potato starch, both contributing to a lower rearrangement of the starch chains making the crystallization process difficult. In contrast, corn and wheat starches lead to more crystalline films because of their lower Mw, which may imply higher mobility and crystal growth rate, and lower phosphate monoester content. This more crystalline structure could be the responsible of their better mechanical properties. [emim+][Ac−] can be considered suitable for manufacturing starch films showing corn and wheat starch films similar properties to synthetic low-density polyethylene, but involving a simple and environmentally-friendly process. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2019.06.004 |