Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold

The use of 3D printed models of the right ventricular outflow tract (RVOT) for surgical and interventional planning is growing and often requires image segmentation of cardiac magnetic resonance (CMR) images. Segmentation results may vary based on contrast, image sequence, signal threshold chosen by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International Journal of Cardiovascular Imaging 2019-11, Vol.35 (11), p.2067-2076
Hauptverfasser: Burkhardt, Barbara E. U., Brown, Nicholas K., Carberry, Jaclyn E., Velasco Forte, Marí Nieves, Byrne, Nicholas, Greil, Gerald, Hussain, Tarique, Tandon, Animesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2076
container_issue 11
container_start_page 2067
container_title The International Journal of Cardiovascular Imaging
container_volume 35
creator Burkhardt, Barbara E. U.
Brown, Nicholas K.
Carberry, Jaclyn E.
Velasco Forte, Marí Nieves
Byrne, Nicholas
Greil, Gerald
Hussain, Tarique
Tandon, Animesh
description The use of 3D printed models of the right ventricular outflow tract (RVOT) for surgical and interventional planning is growing and often requires image segmentation of cardiac magnetic resonance (CMR) images. Segmentation results may vary based on contrast, image sequence, signal threshold chosen by the operator, and manual post-processing. The purpose of this study was to determine potential biases and post-processing errors in image segmentation to enable informed decisions. Models of the RVOT and pulmonary arteries from twelve patients who had contrast enhanced CMR angiography with gadopentetate dimeglumine (GPD), gadofosveset trisodium (GFT), and a post-GFT inversion-recovery (IR) whole heart sequence were segmented, trimmed, and aligned by three operators. Geometric agreement and minimal RVOT diameters were compared between sequences and operators. To determine the contribution of threshold, interoperator variability was compared between models created by the same two operators using the same versus different thresholds. Geometric agreement by Dice between objects was high (intraoperator: 0.89–0.95; interoperator: 0.95–0.97), without differences between sequences. Minimal RVOT diameters differed on average by − 1.9 to − 1.3 mm (intraoperator) and by 0.4 to 1.4 mm (interoperator). The contribution of threshold to interoperator geometric agreement was not significant (same threshold: 0.96 ± 0.06, different threshold: 0.93 ± 0.05; p = 0.181), but minimal RVOT diameters were more variable with different versus constant thresholds (− 9.12% vs. 2.42%; p 
doi_str_mv 10.1007/s10554-019-01646-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2242159584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242159584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-cf2d19f3c7d269fe95f807cd2a0ac8bffc8c127a989f68297bc555232ee27b5c3</originalsourceid><addsrcrecordid>eNp9kTtvHCEUhZGVKH4kf8CFhZQmxY7NYxgGd9EqL8lSGqdGLHPZHYuBNTCx0uaXh921Y8mFCwS69zvnXnEQOqfkkhIirzIlQrQNoaqeru0aeoROqJC8IbLlb3bvTjVCqvYYneZ8RwhhhPF36JhTRrjg4gT9XSYwZQxrXDYJAA_jBCGPMRiPpziAzzi62gOcxvWm4N8QShrt7E3CcS7OxwdckrHlGo_B-RmChZ3CxsqZXBY4w_2-usBxC8mUmBbYhGE_L2-iH96jt874DB8e7zP06-uX2-X35ubntx_LzzeN5VKUxjo2UOW4lQPrlAMlXE-kHZghxvYr52xvKZNG9cp1PVNyZYUQjDMAJlfC8jP06eC7TbGulIuexmzBexMgzlkz1jIqlOjbin58gd7FOdU_2VOE9x0RXaXYgbIp5pzA6W0aJ5P-aEr0LiF9SEjXhPQ-IU2r6OLRel5NMPyXPEVSAX4Acm2FNaTn2a_Y_gORrZ3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240386056</pqid></control><display><type>article</type><title>Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Burkhardt, Barbara E. U. ; Brown, Nicholas K. ; Carberry, Jaclyn E. ; Velasco Forte, Marí Nieves ; Byrne, Nicholas ; Greil, Gerald ; Hussain, Tarique ; Tandon, Animesh</creator><creatorcontrib>Burkhardt, Barbara E. U. ; Brown, Nicholas K. ; Carberry, Jaclyn E. ; Velasco Forte, Marí Nieves ; Byrne, Nicholas ; Greil, Gerald ; Hussain, Tarique ; Tandon, Animesh</creatorcontrib><description>The use of 3D printed models of the right ventricular outflow tract (RVOT) for surgical and interventional planning is growing and often requires image segmentation of cardiac magnetic resonance (CMR) images. Segmentation results may vary based on contrast, image sequence, signal threshold chosen by the operator, and manual post-processing. The purpose of this study was to determine potential biases and post-processing errors in image segmentation to enable informed decisions. Models of the RVOT and pulmonary arteries from twelve patients who had contrast enhanced CMR angiography with gadopentetate dimeglumine (GPD), gadofosveset trisodium (GFT), and a post-GFT inversion-recovery (IR) whole heart sequence were segmented, trimmed, and aligned by three operators. Geometric agreement and minimal RVOT diameters were compared between sequences and operators. To determine the contribution of threshold, interoperator variability was compared between models created by the same two operators using the same versus different thresholds. Geometric agreement by Dice between objects was high (intraoperator: 0.89–0.95; interoperator: 0.95–0.97), without differences between sequences. Minimal RVOT diameters differed on average by − 1.9 to − 1.3 mm (intraoperator) and by 0.4 to 1.4 mm (interoperator). The contribution of threshold to interoperator geometric agreement was not significant (same threshold: 0.96 ± 0.06, different threshold: 0.93 ± 0.05; p = 0.181), but minimal RVOT diameters were more variable with different versus constant thresholds (− 9.12% vs. 2.42%; p &lt; 0.05). Thresholding does not significantly change interoperator variability for geometric agreement, but does for minimal RVOT diameter. Minimal RVOT diameters showed clinically relevant variation within and between operators.</description><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1573-0743</identifier><identifier>EISSN: 1875-8312</identifier><identifier>DOI: 10.1007/s10554-019-01646-1</identifier><identifier>PMID: 31203535</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agreements ; Angiography ; Arteries ; Cardiac Imaging ; Cardiology ; Contrast Media - administration &amp; dosage ; Gadolinium - administration &amp; dosage ; Gadolinium DTPA - administration &amp; dosage ; Gadopentetate dimeglumine ; Heart ; Heart Defects, Congenital - diagnostic imaging ; Heart Defects, Congenital - physiopathology ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - physiopathology ; Humans ; Image contrast ; Image processing ; Image segmentation ; Imaging ; Imaging, Three-Dimensional ; Magnetic resonance ; Magnetic Resonance Angiography ; Magnetic resonance imaging ; Medicine ; Medicine &amp; Public Health ; Models, Cardiovascular ; Observer Variation ; Operators ; Organometallic Compounds - administration &amp; dosage ; Original Paper ; Patient-Specific Modeling ; Post-production processing ; Predictive Value of Tests ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Artery - diagnostic imaging ; Pulmonary Artery - physiopathology ; Radiology ; Reproducibility of Results ; Signal processing ; Three dimensional models ; Three dimensional printing ; Thresholds ; Variability ; Ventricle</subject><ispartof>The International Journal of Cardiovascular Imaging, 2019-11, Vol.35 (11), p.2067-2076</ispartof><rights>Springer Nature B.V. 2019</rights><rights>The International Journal of Cardiovascular Imaging is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-cf2d19f3c7d269fe95f807cd2a0ac8bffc8c127a989f68297bc555232ee27b5c3</citedby><cites>FETCH-LOGICAL-c375t-cf2d19f3c7d269fe95f807cd2a0ac8bffc8c127a989f68297bc555232ee27b5c3</cites><orcidid>0000-0001-9769-8801 ; 0000-0002-0412-9958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-019-01646-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-019-01646-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31203535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkhardt, Barbara E. U.</creatorcontrib><creatorcontrib>Brown, Nicholas K.</creatorcontrib><creatorcontrib>Carberry, Jaclyn E.</creatorcontrib><creatorcontrib>Velasco Forte, Marí Nieves</creatorcontrib><creatorcontrib>Byrne, Nicholas</creatorcontrib><creatorcontrib>Greil, Gerald</creatorcontrib><creatorcontrib>Hussain, Tarique</creatorcontrib><creatorcontrib>Tandon, Animesh</creatorcontrib><title>Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold</title><title>The International Journal of Cardiovascular Imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>The use of 3D printed models of the right ventricular outflow tract (RVOT) for surgical and interventional planning is growing and often requires image segmentation of cardiac magnetic resonance (CMR) images. Segmentation results may vary based on contrast, image sequence, signal threshold chosen by the operator, and manual post-processing. The purpose of this study was to determine potential biases and post-processing errors in image segmentation to enable informed decisions. Models of the RVOT and pulmonary arteries from twelve patients who had contrast enhanced CMR angiography with gadopentetate dimeglumine (GPD), gadofosveset trisodium (GFT), and a post-GFT inversion-recovery (IR) whole heart sequence were segmented, trimmed, and aligned by three operators. Geometric agreement and minimal RVOT diameters were compared between sequences and operators. To determine the contribution of threshold, interoperator variability was compared between models created by the same two operators using the same versus different thresholds. Geometric agreement by Dice between objects was high (intraoperator: 0.89–0.95; interoperator: 0.95–0.97), without differences between sequences. Minimal RVOT diameters differed on average by − 1.9 to − 1.3 mm (intraoperator) and by 0.4 to 1.4 mm (interoperator). The contribution of threshold to interoperator geometric agreement was not significant (same threshold: 0.96 ± 0.06, different threshold: 0.93 ± 0.05; p = 0.181), but minimal RVOT diameters were more variable with different versus constant thresholds (− 9.12% vs. 2.42%; p &lt; 0.05). Thresholding does not significantly change interoperator variability for geometric agreement, but does for minimal RVOT diameter. Minimal RVOT diameters showed clinically relevant variation within and between operators.</description><subject>Agreements</subject><subject>Angiography</subject><subject>Arteries</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Contrast Media - administration &amp; dosage</subject><subject>Gadolinium - administration &amp; dosage</subject><subject>Gadolinium DTPA - administration &amp; dosage</subject><subject>Gadopentetate dimeglumine</subject><subject>Heart</subject><subject>Heart Defects, Congenital - diagnostic imaging</subject><subject>Heart Defects, Congenital - physiopathology</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Angiography</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Cardiovascular</subject><subject>Observer Variation</subject><subject>Operators</subject><subject>Organometallic Compounds - administration &amp; dosage</subject><subject>Original Paper</subject><subject>Patient-Specific Modeling</subject><subject>Post-production processing</subject><subject>Predictive Value of Tests</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - diagnostic imaging</subject><subject>Pulmonary Artery - physiopathology</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Signal processing</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Thresholds</subject><subject>Variability</subject><subject>Ventricle</subject><issn>1569-5794</issn><issn>1573-0743</issn><issn>1875-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTtvHCEUhZGVKH4kf8CFhZQmxY7NYxgGd9EqL8lSGqdGLHPZHYuBNTCx0uaXh921Y8mFCwS69zvnXnEQOqfkkhIirzIlQrQNoaqeru0aeoROqJC8IbLlb3bvTjVCqvYYneZ8RwhhhPF36JhTRrjg4gT9XSYwZQxrXDYJAA_jBCGPMRiPpziAzzi62gOcxvWm4N8QShrt7E3CcS7OxwdckrHlGo_B-RmChZ3CxsqZXBY4w_2-usBxC8mUmBbYhGE_L2-iH96jt874DB8e7zP06-uX2-X35ubntx_LzzeN5VKUxjo2UOW4lQPrlAMlXE-kHZghxvYr52xvKZNG9cp1PVNyZYUQjDMAJlfC8jP06eC7TbGulIuexmzBexMgzlkz1jIqlOjbin58gd7FOdU_2VOE9x0RXaXYgbIp5pzA6W0aJ5P-aEr0LiF9SEjXhPQ-IU2r6OLRel5NMPyXPEVSAX4Acm2FNaTn2a_Y_gORrZ3c</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Burkhardt, Barbara E. U.</creator><creator>Brown, Nicholas K.</creator><creator>Carberry, Jaclyn E.</creator><creator>Velasco Forte, Marí Nieves</creator><creator>Byrne, Nicholas</creator><creator>Greil, Gerald</creator><creator>Hussain, Tarique</creator><creator>Tandon, Animesh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9769-8801</orcidid><orcidid>https://orcid.org/0000-0002-0412-9958</orcidid></search><sort><creationdate>20191101</creationdate><title>Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold</title><author>Burkhardt, Barbara E. U. ; Brown, Nicholas K. ; Carberry, Jaclyn E. ; Velasco Forte, Marí Nieves ; Byrne, Nicholas ; Greil, Gerald ; Hussain, Tarique ; Tandon, Animesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-cf2d19f3c7d269fe95f807cd2a0ac8bffc8c127a989f68297bc555232ee27b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agreements</topic><topic>Angiography</topic><topic>Arteries</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Contrast Media - administration &amp; dosage</topic><topic>Gadolinium - administration &amp; dosage</topic><topic>Gadolinium DTPA - administration &amp; dosage</topic><topic>Gadopentetate dimeglumine</topic><topic>Heart</topic><topic>Heart Defects, Congenital - diagnostic imaging</topic><topic>Heart Defects, Congenital - physiopathology</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Angiography</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Cardiovascular</topic><topic>Observer Variation</topic><topic>Operators</topic><topic>Organometallic Compounds - administration &amp; dosage</topic><topic>Original Paper</topic><topic>Patient-Specific Modeling</topic><topic>Post-production processing</topic><topic>Predictive Value of Tests</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - diagnostic imaging</topic><topic>Pulmonary Artery - physiopathology</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Signal processing</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Thresholds</topic><topic>Variability</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkhardt, Barbara E. U.</creatorcontrib><creatorcontrib>Brown, Nicholas K.</creatorcontrib><creatorcontrib>Carberry, Jaclyn E.</creatorcontrib><creatorcontrib>Velasco Forte, Marí Nieves</creatorcontrib><creatorcontrib>Byrne, Nicholas</creatorcontrib><creatorcontrib>Greil, Gerald</creatorcontrib><creatorcontrib>Hussain, Tarique</creatorcontrib><creatorcontrib>Tandon, Animesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The International Journal of Cardiovascular Imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkhardt, Barbara E. U.</au><au>Brown, Nicholas K.</au><au>Carberry, Jaclyn E.</au><au>Velasco Forte, Marí Nieves</au><au>Byrne, Nicholas</au><au>Greil, Gerald</au><au>Hussain, Tarique</au><au>Tandon, Animesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold</atitle><jtitle>The International Journal of Cardiovascular Imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>35</volume><issue>11</issue><spage>2067</spage><epage>2076</epage><pages>2067-2076</pages><issn>1569-5794</issn><eissn>1573-0743</eissn><eissn>1875-8312</eissn><abstract>The use of 3D printed models of the right ventricular outflow tract (RVOT) for surgical and interventional planning is growing and often requires image segmentation of cardiac magnetic resonance (CMR) images. Segmentation results may vary based on contrast, image sequence, signal threshold chosen by the operator, and manual post-processing. The purpose of this study was to determine potential biases and post-processing errors in image segmentation to enable informed decisions. Models of the RVOT and pulmonary arteries from twelve patients who had contrast enhanced CMR angiography with gadopentetate dimeglumine (GPD), gadofosveset trisodium (GFT), and a post-GFT inversion-recovery (IR) whole heart sequence were segmented, trimmed, and aligned by three operators. Geometric agreement and minimal RVOT diameters were compared between sequences and operators. To determine the contribution of threshold, interoperator variability was compared between models created by the same two operators using the same versus different thresholds. Geometric agreement by Dice between objects was high (intraoperator: 0.89–0.95; interoperator: 0.95–0.97), without differences between sequences. Minimal RVOT diameters differed on average by − 1.9 to − 1.3 mm (intraoperator) and by 0.4 to 1.4 mm (interoperator). The contribution of threshold to interoperator geometric agreement was not significant (same threshold: 0.96 ± 0.06, different threshold: 0.93 ± 0.05; p = 0.181), but minimal RVOT diameters were more variable with different versus constant thresholds (− 9.12% vs. 2.42%; p &lt; 0.05). Thresholding does not significantly change interoperator variability for geometric agreement, but does for minimal RVOT diameter. Minimal RVOT diameters showed clinically relevant variation within and between operators.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31203535</pmid><doi>10.1007/s10554-019-01646-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9769-8801</orcidid><orcidid>https://orcid.org/0000-0002-0412-9958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-5794
ispartof The International Journal of Cardiovascular Imaging, 2019-11, Vol.35 (11), p.2067-2076
issn 1569-5794
1573-0743
1875-8312
language eng
recordid cdi_proquest_miscellaneous_2242159584
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agreements
Angiography
Arteries
Cardiac Imaging
Cardiology
Contrast Media - administration & dosage
Gadolinium - administration & dosage
Gadolinium DTPA - administration & dosage
Gadopentetate dimeglumine
Heart
Heart Defects, Congenital - diagnostic imaging
Heart Defects, Congenital - physiopathology
Heart Ventricles - diagnostic imaging
Heart Ventricles - physiopathology
Humans
Image contrast
Image processing
Image segmentation
Imaging
Imaging, Three-Dimensional
Magnetic resonance
Magnetic Resonance Angiography
Magnetic resonance imaging
Medicine
Medicine & Public Health
Models, Cardiovascular
Observer Variation
Operators
Organometallic Compounds - administration & dosage
Original Paper
Patient-Specific Modeling
Post-production processing
Predictive Value of Tests
Pulmonary arteries
Pulmonary artery
Pulmonary Artery - diagnostic imaging
Pulmonary Artery - physiopathology
Radiology
Reproducibility of Results
Signal processing
Three dimensional models
Three dimensional printing
Thresholds
Variability
Ventricle
title Creating three dimensional models of the right ventricular outflow tract: influence of contrast, sequence, operator, and threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20three%20dimensional%20models%20of%20the%20right%20ventricular%20outflow%20tract:%20influence%20of%20contrast,%20sequence,%20operator,%20and%20threshold&rft.jtitle=The%20International%20Journal%20of%20Cardiovascular%20Imaging&rft.au=Burkhardt,%20Barbara%20E.%20U.&rft.date=2019-11-01&rft.volume=35&rft.issue=11&rft.spage=2067&rft.epage=2076&rft.pages=2067-2076&rft.issn=1569-5794&rft.eissn=1573-0743&rft_id=info:doi/10.1007/s10554-019-01646-1&rft_dat=%3Cproquest_cross%3E2242159584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2240386056&rft_id=info:pmid/31203535&rfr_iscdi=true