Incorporated region detection and classification using deep convolutional networks for bone age assessment

•The first attempt to integrate TW3 and CNN-based method based on deep learning.•Explore the expert knowledge from TW3 for bone age assessment by deep convolution networks.•Incorporation of TW3 scheme with deep learning shows better performance than the GPbased method.•Achieves a mean absolute error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2019-06, Vol.97, p.1-8
Hauptverfasser: Bui, Toan Duc, Lee, Jae-Joon, Shin, Jitae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Artificial intelligence in medicine
container_volume 97
creator Bui, Toan Duc
Lee, Jae-Joon
Shin, Jitae
description •The first attempt to integrate TW3 and CNN-based method based on deep learning.•Explore the expert knowledge from TW3 for bone age assessment by deep convolution networks.•Incorporation of TW3 scheme with deep learning shows better performance than the GPbased method.•Achieves a mean absolute error of about 0.59 years between manual radiology expert and automatic evaluation. Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.
doi_str_mv 10.1016/j.artmed.2019.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2242154889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365718305098</els_id><sourcerecordid>2242154889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9b93147ddda275a88a841e03c0617a29138a6dc25cfa36b728812083e64459673</originalsourceid><addsrcrecordid>eNp9kE1r3DAQQEVp6G6T_INSfOzFjr4sy5dCCUkaCOSSnIVWGi_aeqWtxk7Jv4_c3VxzECNm3swwj5BvjDaMMnW1a2ye9uAbTlnfUNlQ2n4ia6Y7UXOt6Geypr0QtVBttyJfEXeU0k4y9YWsBOOUi75dk919dCkfUrYT-CrDNqRYeZjATcvPRl-50SKGITj7PzVjiNuCwKFyKb6kcV7SdqwiTP9S_oPVkHK1SREquy0PERD3EKcLcjbYEeHyFM_J8-3N0_Xv-uHx7v7610PthOJT3W96wWTnvbe8a63WVksGVDiqWGd5z4S2yjveusEKtem41uUaLUBJ2faqE-fkx3HuIae_M-Bk9gEdjKONkGY0nEvOWql1X1B5RF1OiBkGc8hhb_OrYdQsls3OHC2bxbKh0hTLpe37acO8WWrvTe9aC_DzCEC58yVANugCRAc-5GLW-BQ-3vAGkQGRCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242154889</pqid></control><display><type>article</type><title>Incorporated region detection and classification using deep convolutional networks for bone age assessment</title><source>Elsevier ScienceDirect Journals</source><creator>Bui, Toan Duc ; Lee, Jae-Joon ; Shin, Jitae</creator><creatorcontrib>Bui, Toan Duc ; Lee, Jae-Joon ; Shin, Jitae</creatorcontrib><description>•The first attempt to integrate TW3 and CNN-based method based on deep learning.•Explore the expert knowledge from TW3 for bone age assessment by deep convolution networks.•Incorporation of TW3 scheme with deep learning shows better performance than the GPbased method.•Achieves a mean absolute error of about 0.59 years between manual radiology expert and automatic evaluation. Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2019.04.005</identifier><identifier>PMID: 31202395</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bone age assessment ; Convolutional neural networks ; Greulich and Pyle ; Tanner-Whitehouse</subject><ispartof>Artificial intelligence in medicine, 2019-06, Vol.97, p.1-8</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9b93147ddda275a88a841e03c0617a29138a6dc25cfa36b728812083e64459673</citedby><cites>FETCH-LOGICAL-c362t-9b93147ddda275a88a841e03c0617a29138a6dc25cfa36b728812083e64459673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0933365718305098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31202395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><creatorcontrib>Shin, Jitae</creatorcontrib><title>Incorporated region detection and classification using deep convolutional networks for bone age assessment</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>•The first attempt to integrate TW3 and CNN-based method based on deep learning.•Explore the expert knowledge from TW3 for bone age assessment by deep convolution networks.•Incorporation of TW3 scheme with deep learning shows better performance than the GPbased method.•Achieves a mean absolute error of about 0.59 years between manual radiology expert and automatic evaluation. Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.</description><subject>Bone age assessment</subject><subject>Convolutional neural networks</subject><subject>Greulich and Pyle</subject><subject>Tanner-Whitehouse</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQQEVp6G6T_INSfOzFjr4sy5dCCUkaCOSSnIVWGi_aeqWtxk7Jv4_c3VxzECNm3swwj5BvjDaMMnW1a2ye9uAbTlnfUNlQ2n4ia6Y7UXOt6Geypr0QtVBttyJfEXeU0k4y9YWsBOOUi75dk919dCkfUrYT-CrDNqRYeZjATcvPRl-50SKGITj7PzVjiNuCwKFyKb6kcV7SdqwiTP9S_oPVkHK1SREquy0PERD3EKcLcjbYEeHyFM_J8-3N0_Xv-uHx7v7610PthOJT3W96wWTnvbe8a63WVksGVDiqWGd5z4S2yjveusEKtem41uUaLUBJ2faqE-fkx3HuIae_M-Bk9gEdjKONkGY0nEvOWql1X1B5RF1OiBkGc8hhb_OrYdQsls3OHC2bxbKh0hTLpe37acO8WWrvTe9aC_DzCEC58yVANugCRAc-5GLW-BQ-3vAGkQGRCA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Bui, Toan Duc</creator><creator>Lee, Jae-Joon</creator><creator>Shin, Jitae</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201906</creationdate><title>Incorporated region detection and classification using deep convolutional networks for bone age assessment</title><author>Bui, Toan Duc ; Lee, Jae-Joon ; Shin, Jitae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9b93147ddda275a88a841e03c0617a29138a6dc25cfa36b728812083e64459673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bone age assessment</topic><topic>Convolutional neural networks</topic><topic>Greulich and Pyle</topic><topic>Tanner-Whitehouse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><creatorcontrib>Shin, Jitae</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Toan Duc</au><au>Lee, Jae-Joon</au><au>Shin, Jitae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporated region detection and classification using deep convolutional networks for bone age assessment</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>97</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>•The first attempt to integrate TW3 and CNN-based method based on deep learning.•Explore the expert knowledge from TW3 for bone age assessment by deep convolution networks.•Incorporation of TW3 scheme with deep learning shows better performance than the GPbased method.•Achieves a mean absolute error of about 0.59 years between manual radiology expert and automatic evaluation. Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31202395</pmid><doi>10.1016/j.artmed.2019.04.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2019-06, Vol.97, p.1-8
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_2242154889
source Elsevier ScienceDirect Journals
subjects Bone age assessment
Convolutional neural networks
Greulich and Pyle
Tanner-Whitehouse
title Incorporated region detection and classification using deep convolutional networks for bone age assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporated%20region%20detection%20and%20classification%20using%20deep%20convolutional%20networks%20for%20bone%20age%20assessment&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Bui,%20Toan%20Duc&rft.date=2019-06&rft.volume=97&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2019.04.005&rft_dat=%3Cproquest_cross%3E2242154889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242154889&rft_id=info:pmid/31202395&rft_els_id=S0933365718305098&rfr_iscdi=true