The microscopic Einstein-de Haas effect

The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-06, Vol.150 (22), p.224109-224109
Hauptverfasser: Wells, T., Horsfield, A. P., Foulkes, W. M. C., Dudarev, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224109
container_issue 22
container_start_page 224109
container_title The Journal of chemical physics
container_volume 150
creator Wells, T.
Horsfield, A. P.
Foulkes, W. M. C.
Dudarev, S. L.
description The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.
doi_str_mv 10.1063/1.5092223
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2242154789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239916155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgaAUBv4AqmDgQ0o527Fdj6gqFKkSS5ktx7morpqkxMnAv8dRCgMD093w6NXdS8gVhSkFyZ_oVIBmjPEjMqIw04mSGo7JCIDRREuQZ-Q8hC0AUMXSU3LGKQPGUjYid-sNTkrvmjq4eu_dZOGr0KKvkhwnS2vDBIsCXXtBTgq7C3h5mGPy8bJYz5fJ6v31bf68SlyqZJu4wlrFUyuQydwVqCDPM0AJmGaCxVWg1lphIbMMKbUu1TLnOsdMZOBUzsfkZsitQ-tNcL5Ft3F1VcUbDBVMcp5GdD-gfVN_dhhaU_rgcLezFdZdMP1rVKRqpiO9_UO3dddU8YWouNZUUiGiehhU30NosDD7xpe2-TIUTF-xoeZQcbTXh8QuKzH_lT-dRvA4gP562_q6-iftG-6wgK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239916155</pqid></control><display><type>article</type><title>The microscopic Einstein-de Haas effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L.</creator><creatorcontrib>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5092223</identifier><identifier>PMID: 31202242</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Angular momentum ; chemistry ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Dimers ; Einstein-de Haas effect ; Electric fields ; electromagnetism ; Electron spin ; Electronic structure ; electronic structure methods ; Electrons ; Energy levels ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lattice dynamics ; Level crossings ; Magnetic fields ; Nuclei (nuclear physics) ; operator theory ; oxygen ; physics ; spin angular momentum ; Spin-orbit interactions ; tight-binding model ; Torque</subject><ispartof>The Journal of chemical physics, 2019-06, Vol.150 (22), p.224109-224109</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</citedby><cites>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</cites><orcidid>0000-0002-7954-3547 ; 0000-0001-5122-6710 ; 0000-0003-4533-666X ; 0000-0001-8359-1122 ; 0000000151226710 ; 000000034533666X ; 0000000279543547 ; 0000000183591122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5092223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31202242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1526334$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wells, T.</creatorcontrib><creatorcontrib>Horsfield, A. P.</creatorcontrib><creatorcontrib>Foulkes, W. M. C.</creatorcontrib><creatorcontrib>Dudarev, S. L.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>The microscopic Einstein-de Haas effect</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</description><subject>Angular momentum</subject><subject>chemistry</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Dimers</subject><subject>Einstein-de Haas effect</subject><subject>Electric fields</subject><subject>electromagnetism</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>electronic structure methods</subject><subject>Electrons</subject><subject>Energy levels</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lattice dynamics</subject><subject>Level crossings</subject><subject>Magnetic fields</subject><subject>Nuclei (nuclear physics)</subject><subject>operator theory</subject><subject>oxygen</subject><subject>physics</subject><subject>spin angular momentum</subject><subject>Spin-orbit interactions</subject><subject>tight-binding model</subject><subject>Torque</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgaAUBv4AqmDgQ0o527Fdj6gqFKkSS5ktx7morpqkxMnAv8dRCgMD093w6NXdS8gVhSkFyZ_oVIBmjPEjMqIw04mSGo7JCIDRREuQZ-Q8hC0AUMXSU3LGKQPGUjYid-sNTkrvmjq4eu_dZOGr0KKvkhwnS2vDBIsCXXtBTgq7C3h5mGPy8bJYz5fJ6v31bf68SlyqZJu4wlrFUyuQydwVqCDPM0AJmGaCxVWg1lphIbMMKbUu1TLnOsdMZOBUzsfkZsitQ-tNcL5Ft3F1VcUbDBVMcp5GdD-gfVN_dhhaU_rgcLezFdZdMP1rVKRqpiO9_UO3dddU8YWouNZUUiGiehhU30NosDD7xpe2-TIUTF-xoeZQcbTXh8QuKzH_lT-dRvA4gP562_q6-iftG-6wgK4</recordid><startdate>20190614</startdate><enddate>20190614</enddate><creator>Wells, T.</creator><creator>Horsfield, A. P.</creator><creator>Foulkes, W. M. C.</creator><creator>Dudarev, S. L.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7954-3547</orcidid><orcidid>https://orcid.org/0000-0001-5122-6710</orcidid><orcidid>https://orcid.org/0000-0003-4533-666X</orcidid><orcidid>https://orcid.org/0000-0001-8359-1122</orcidid><orcidid>https://orcid.org/0000000151226710</orcidid><orcidid>https://orcid.org/000000034533666X</orcidid><orcidid>https://orcid.org/0000000279543547</orcidid><orcidid>https://orcid.org/0000000183591122</orcidid></search><sort><creationdate>20190614</creationdate><title>The microscopic Einstein-de Haas effect</title><author>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>chemistry</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Dimers</topic><topic>Einstein-de Haas effect</topic><topic>Electric fields</topic><topic>electromagnetism</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>electronic structure methods</topic><topic>Electrons</topic><topic>Energy levels</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lattice dynamics</topic><topic>Level crossings</topic><topic>Magnetic fields</topic><topic>Nuclei (nuclear physics)</topic><topic>operator theory</topic><topic>oxygen</topic><topic>physics</topic><topic>spin angular momentum</topic><topic>Spin-orbit interactions</topic><topic>tight-binding model</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wells, T.</creatorcontrib><creatorcontrib>Horsfield, A. P.</creatorcontrib><creatorcontrib>Foulkes, W. M. C.</creatorcontrib><creatorcontrib>Dudarev, S. L.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wells, T.</au><au>Horsfield, A. P.</au><au>Foulkes, W. M. C.</au><au>Dudarev, S. L.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microscopic Einstein-de Haas effect</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-06-14</date><risdate>2019</risdate><volume>150</volume><issue>22</issue><spage>224109</spage><epage>224109</epage><pages>224109-224109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31202242</pmid><doi>10.1063/1.5092223</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7954-3547</orcidid><orcidid>https://orcid.org/0000-0001-5122-6710</orcidid><orcidid>https://orcid.org/0000-0003-4533-666X</orcidid><orcidid>https://orcid.org/0000-0001-8359-1122</orcidid><orcidid>https://orcid.org/0000000151226710</orcidid><orcidid>https://orcid.org/000000034533666X</orcidid><orcidid>https://orcid.org/0000000279543547</orcidid><orcidid>https://orcid.org/0000000183591122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-06, Vol.150 (22), p.224109-224109
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2242154789
source AIP Journals Complete; Alma/SFX Local Collection
subjects Angular momentum
chemistry
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Dimers
Einstein-de Haas effect
Electric fields
electromagnetism
Electron spin
Electronic structure
electronic structure methods
Electrons
Energy levels
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lattice dynamics
Level crossings
Magnetic fields
Nuclei (nuclear physics)
operator theory
oxygen
physics
spin angular momentum
Spin-orbit interactions
tight-binding model
Torque
title The microscopic Einstein-de Haas effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microscopic%20Einstein-de%20Haas%20effect&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wells,%20T.&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2019-06-14&rft.volume=150&rft.issue=22&rft.spage=224109&rft.epage=224109&rft.pages=224109-224109&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5092223&rft_dat=%3Cproquest_scita%3E2239916155%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239916155&rft_id=info:pmid/31202242&rfr_iscdi=true