The microscopic Einstein-de Haas effect
The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-06, Vol.150 (22), p.224109-224109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224109 |
---|---|
container_issue | 22 |
container_start_page | 224109 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Wells, T. Horsfield, A. P. Foulkes, W. M. C. Dudarev, S. L. |
description | The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field. |
doi_str_mv | 10.1063/1.5092223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2242154789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239916155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgaAUBv4AqmDgQ0o527Fdj6gqFKkSS5ktx7morpqkxMnAv8dRCgMD093w6NXdS8gVhSkFyZ_oVIBmjPEjMqIw04mSGo7JCIDRREuQZ-Q8hC0AUMXSU3LGKQPGUjYid-sNTkrvmjq4eu_dZOGr0KKvkhwnS2vDBIsCXXtBTgq7C3h5mGPy8bJYz5fJ6v31bf68SlyqZJu4wlrFUyuQydwVqCDPM0AJmGaCxVWg1lphIbMMKbUu1TLnOsdMZOBUzsfkZsitQ-tNcL5Ft3F1VcUbDBVMcp5GdD-gfVN_dhhaU_rgcLezFdZdMP1rVKRqpiO9_UO3dddU8YWouNZUUiGiehhU30NosDD7xpe2-TIUTF-xoeZQcbTXh8QuKzH_lT-dRvA4gP562_q6-iftG-6wgK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239916155</pqid></control><display><type>article</type><title>The microscopic Einstein-de Haas effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L.</creator><creatorcontrib>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5092223</identifier><identifier>PMID: 31202242</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Angular momentum ; chemistry ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Dimers ; Einstein-de Haas effect ; Electric fields ; electromagnetism ; Electron spin ; Electronic structure ; electronic structure methods ; Electrons ; Energy levels ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lattice dynamics ; Level crossings ; Magnetic fields ; Nuclei (nuclear physics) ; operator theory ; oxygen ; physics ; spin angular momentum ; Spin-orbit interactions ; tight-binding model ; Torque</subject><ispartof>The Journal of chemical physics, 2019-06, Vol.150 (22), p.224109-224109</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</citedby><cites>FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</cites><orcidid>0000-0002-7954-3547 ; 0000-0001-5122-6710 ; 0000-0003-4533-666X ; 0000-0001-8359-1122 ; 0000000151226710 ; 000000034533666X ; 0000000279543547 ; 0000000183591122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5092223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31202242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1526334$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wells, T.</creatorcontrib><creatorcontrib>Horsfield, A. P.</creatorcontrib><creatorcontrib>Foulkes, W. M. C.</creatorcontrib><creatorcontrib>Dudarev, S. L.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>The microscopic Einstein-de Haas effect</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</description><subject>Angular momentum</subject><subject>chemistry</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Dimers</subject><subject>Einstein-de Haas effect</subject><subject>Electric fields</subject><subject>electromagnetism</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>electronic structure methods</subject><subject>Electrons</subject><subject>Energy levels</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lattice dynamics</subject><subject>Level crossings</subject><subject>Magnetic fields</subject><subject>Nuclei (nuclear physics)</subject><subject>operator theory</subject><subject>oxygen</subject><subject>physics</subject><subject>spin angular momentum</subject><subject>Spin-orbit interactions</subject><subject>tight-binding model</subject><subject>Torque</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgaAUBv4AqmDgQ0o527Fdj6gqFKkSS5ktx7morpqkxMnAv8dRCgMD093w6NXdS8gVhSkFyZ_oVIBmjPEjMqIw04mSGo7JCIDRREuQZ-Q8hC0AUMXSU3LGKQPGUjYid-sNTkrvmjq4eu_dZOGr0KKvkhwnS2vDBIsCXXtBTgq7C3h5mGPy8bJYz5fJ6v31bf68SlyqZJu4wlrFUyuQydwVqCDPM0AJmGaCxVWg1lphIbMMKbUu1TLnOsdMZOBUzsfkZsitQ-tNcL5Ft3F1VcUbDBVMcp5GdD-gfVN_dhhaU_rgcLezFdZdMP1rVKRqpiO9_UO3dddU8YWouNZUUiGiehhU30NosDD7xpe2-TIUTF-xoeZQcbTXh8QuKzH_lT-dRvA4gP562_q6-iftG-6wgK4</recordid><startdate>20190614</startdate><enddate>20190614</enddate><creator>Wells, T.</creator><creator>Horsfield, A. P.</creator><creator>Foulkes, W. M. C.</creator><creator>Dudarev, S. L.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7954-3547</orcidid><orcidid>https://orcid.org/0000-0001-5122-6710</orcidid><orcidid>https://orcid.org/0000-0003-4533-666X</orcidid><orcidid>https://orcid.org/0000-0001-8359-1122</orcidid><orcidid>https://orcid.org/0000000151226710</orcidid><orcidid>https://orcid.org/000000034533666X</orcidid><orcidid>https://orcid.org/0000000279543547</orcidid><orcidid>https://orcid.org/0000000183591122</orcidid></search><sort><creationdate>20190614</creationdate><title>The microscopic Einstein-de Haas effect</title><author>Wells, T. ; Horsfield, A. P. ; Foulkes, W. M. C. ; Dudarev, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-cfaa734a5e26dcfe70ddb0e60e4b52db05e9997ef6bbe11ac496d39deb5b0c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>chemistry</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Dimers</topic><topic>Einstein-de Haas effect</topic><topic>Electric fields</topic><topic>electromagnetism</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>electronic structure methods</topic><topic>Electrons</topic><topic>Energy levels</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lattice dynamics</topic><topic>Level crossings</topic><topic>Magnetic fields</topic><topic>Nuclei (nuclear physics)</topic><topic>operator theory</topic><topic>oxygen</topic><topic>physics</topic><topic>spin angular momentum</topic><topic>Spin-orbit interactions</topic><topic>tight-binding model</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wells, T.</creatorcontrib><creatorcontrib>Horsfield, A. P.</creatorcontrib><creatorcontrib>Foulkes, W. M. C.</creatorcontrib><creatorcontrib>Dudarev, S. L.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wells, T.</au><au>Horsfield, A. P.</au><au>Foulkes, W. M. C.</au><au>Dudarev, S. L.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microscopic Einstein-de Haas effect</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-06-14</date><risdate>2019</risdate><volume>150</volume><issue>22</issue><spage>224109</spage><epage>224109</epage><pages>224109-224109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31202242</pmid><doi>10.1063/1.5092223</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7954-3547</orcidid><orcidid>https://orcid.org/0000-0001-5122-6710</orcidid><orcidid>https://orcid.org/0000-0003-4533-666X</orcidid><orcidid>https://orcid.org/0000-0001-8359-1122</orcidid><orcidid>https://orcid.org/0000000151226710</orcidid><orcidid>https://orcid.org/000000034533666X</orcidid><orcidid>https://orcid.org/0000000279543547</orcidid><orcidid>https://orcid.org/0000000183591122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-06, Vol.150 (22), p.224109-224109 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2242154789 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Angular momentum chemistry CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Dimers Einstein-de Haas effect Electric fields electromagnetism Electron spin Electronic structure electronic structure methods Electrons Energy levels INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY lattice dynamics Level crossings Magnetic fields Nuclei (nuclear physics) operator theory oxygen physics spin angular momentum Spin-orbit interactions tight-binding model Torque |
title | The microscopic Einstein-de Haas effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microscopic%20Einstein-de%20Haas%20effect&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wells,%20T.&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2019-06-14&rft.volume=150&rft.issue=22&rft.spage=224109&rft.epage=224109&rft.pages=224109-224109&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5092223&rft_dat=%3Cproquest_scita%3E2239916155%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239916155&rft_id=info:pmid/31202242&rfr_iscdi=true |