Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies

A mathematical model is proposed to simulate the “shock-kill” strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2019-07, Vol.81 (7), p.2625-2648
Hauptverfasser: Yan, Chao, Wang, Wendi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2648
container_issue 7
container_start_page 2625
container_title Bulletin of mathematical biology
container_volume 81
creator Yan, Chao
Wang, Wendi
description A mathematical model is proposed to simulate the “shock-kill” strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989–999, 2014 ). Optimal time for cessation of treatment is also analyzed to aid practical applications.
doi_str_mv 10.1007/s11538-019-00621-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2235065710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252770686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-41a4731d25d461c547f9f839659006937c40679bdafd7e2ede9423686c92c2383</originalsourceid><addsrcrecordid>eNp9kEFPIyEYQMlGo93qH_BgSLx4mfUDBhiOpruuTWq8WK-EAqOYDlNhJqb_fum2u5t42BMH3vfgewhdEPhGAORNJoSzpgKiKgBBSQVf0IRwSislgB6hCYCiVUNrOEVfc36DMqSYOkGnjBBBOFcTtHjonV-H-ILv58_4-zaaLtiMl9H5hGd9twrRDKGP-OnVJ7PZ4o8wvOJ5dKP1KWMTHb6NQ1j1Lvh8ho5bs87-_HBO0fLux9Psvlo8_pzPbheVZZIPVU1MLRlxlLtaEMtr2aq2YUpwVfZQTNoahFQrZ1onPfXOq5oy0QirqKWsYVN0vfduUv8--jzoLmTr12sTfT9mTSnjILgkUNCrT-hbP6ZYflcoTqWE4i0U3VM29Tkn3-pNCp1JW01A71rrfWtdWuvfrfVOfXlQj6vOu78jf-IWgO2BXK7ii0__3v6P9hdjf4bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252770686</pqid></control><display><type>article</type><title>Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yan, Chao ; Wang, Wendi</creator><creatorcontrib>Yan, Chao ; Wang, Wendi</creatorcontrib><description>A mathematical model is proposed to simulate the “shock-kill” strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989–999, 2014 ). Optimal time for cessation of treatment is also analyzed to aid practical applications.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-019-00621-0</identifier><identifier>PMID: 31161559</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anti-HIV Agents - administration &amp; dosage ; Antibodies ; Antibodies, Neutralizing - administration &amp; dosage ; Antiretroviral Therapy, Highly Active ; Basic Reproduction Number ; Cell Biology ; Combined Modality Therapy ; Computer Simulation ; Dosage ; HIV ; HIV Antibodies - administration &amp; dosage ; HIV Infections - drug therapy ; HIV Infections - immunology ; HIV Infections - therapy ; HIV-1 - drug effects ; HIV-1 - immunology ; HIV-1 - physiology ; Human immunodeficiency virus ; Humans ; Immunoglobulins ; Latency ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; T-Lymphocytes - drug effects ; T-Lymphocytes - immunology ; T-Lymphocytes - virology ; Therapy ; Virus Latency - drug effects ; Virus Latency - immunology ; Viruses</subject><ispartof>Bulletin of mathematical biology, 2019-07, Vol.81 (7), p.2625-2648</ispartof><rights>Society for Mathematical Biology 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-41a4731d25d461c547f9f839659006937c40679bdafd7e2ede9423686c92c2383</citedby><cites>FETCH-LOGICAL-c375t-41a4731d25d461c547f9f839659006937c40679bdafd7e2ede9423686c92c2383</cites><orcidid>0000-0003-4741-7789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-019-00621-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-019-00621-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31161559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Wang, Wendi</creatorcontrib><title>Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>A mathematical model is proposed to simulate the “shock-kill” strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989–999, 2014 ). Optimal time for cessation of treatment is also analyzed to aid practical applications.</description><subject>Anti-HIV Agents - administration &amp; dosage</subject><subject>Antibodies</subject><subject>Antibodies, Neutralizing - administration &amp; dosage</subject><subject>Antiretroviral Therapy, Highly Active</subject><subject>Basic Reproduction Number</subject><subject>Cell Biology</subject><subject>Combined Modality Therapy</subject><subject>Computer Simulation</subject><subject>Dosage</subject><subject>HIV</subject><subject>HIV Antibodies - administration &amp; dosage</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - immunology</subject><subject>HIV Infections - therapy</subject><subject>HIV-1 - drug effects</subject><subject>HIV-1 - immunology</subject><subject>HIV-1 - physiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Latency</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>T-Lymphocytes - drug effects</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - virology</subject><subject>Therapy</subject><subject>Virus Latency - drug effects</subject><subject>Virus Latency - immunology</subject><subject>Viruses</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPIyEYQMlGo93qH_BgSLx4mfUDBhiOpruuTWq8WK-EAqOYDlNhJqb_fum2u5t42BMH3vfgewhdEPhGAORNJoSzpgKiKgBBSQVf0IRwSislgB6hCYCiVUNrOEVfc36DMqSYOkGnjBBBOFcTtHjonV-H-ILv58_4-zaaLtiMl9H5hGd9twrRDKGP-OnVJ7PZ4o8wvOJ5dKP1KWMTHb6NQ1j1Lvh8ho5bs87-_HBO0fLux9Psvlo8_pzPbheVZZIPVU1MLRlxlLtaEMtr2aq2YUpwVfZQTNoahFQrZ1onPfXOq5oy0QirqKWsYVN0vfduUv8--jzoLmTr12sTfT9mTSnjILgkUNCrT-hbP6ZYflcoTqWE4i0U3VM29Tkn3-pNCp1JW01A71rrfWtdWuvfrfVOfXlQj6vOu78jf-IWgO2BXK7ii0__3v6P9hdjf4bx</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Yan, Chao</creator><creator>Wang, Wendi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4741-7789</orcidid></search><sort><creationdate>20190701</creationdate><title>Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies</title><author>Yan, Chao ; Wang, Wendi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-41a4731d25d461c547f9f839659006937c40679bdafd7e2ede9423686c92c2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anti-HIV Agents - administration &amp; dosage</topic><topic>Antibodies</topic><topic>Antibodies, Neutralizing - administration &amp; dosage</topic><topic>Antiretroviral Therapy, Highly Active</topic><topic>Basic Reproduction Number</topic><topic>Cell Biology</topic><topic>Combined Modality Therapy</topic><topic>Computer Simulation</topic><topic>Dosage</topic><topic>HIV</topic><topic>HIV Antibodies - administration &amp; dosage</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - immunology</topic><topic>HIV Infections - therapy</topic><topic>HIV-1 - drug effects</topic><topic>HIV-1 - immunology</topic><topic>HIV-1 - physiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Latency</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>T-Lymphocytes - drug effects</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - virology</topic><topic>Therapy</topic><topic>Virus Latency - drug effects</topic><topic>Virus Latency - immunology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Wang, Wendi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Chao</au><au>Wang, Wendi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>81</volume><issue>7</issue><spage>2625</spage><epage>2648</epage><pages>2625-2648</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A mathematical model is proposed to simulate the “shock-kill” strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989–999, 2014 ). Optimal time for cessation of treatment is also analyzed to aid practical applications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31161559</pmid><doi>10.1007/s11538-019-00621-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4741-7789</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2019-07, Vol.81 (7), p.2625-2648
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2235065710
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anti-HIV Agents - administration & dosage
Antibodies
Antibodies, Neutralizing - administration & dosage
Antiretroviral Therapy, Highly Active
Basic Reproduction Number
Cell Biology
Combined Modality Therapy
Computer Simulation
Dosage
HIV
HIV Antibodies - administration & dosage
HIV Infections - drug therapy
HIV Infections - immunology
HIV Infections - therapy
HIV-1 - drug effects
HIV-1 - immunology
HIV-1 - physiology
Human immunodeficiency virus
Humans
Immunoglobulins
Latency
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
T-Lymphocytes - drug effects
T-Lymphocytes - immunology
T-Lymphocytes - virology
Therapy
Virus Latency - drug effects
Virus Latency - immunology
Viruses
title Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20HIV%20Dynamics%20Under%20Combination%20Therapy%20with%20Inducers%20and%20Antibodies&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Yan,%20Chao&rft.date=2019-07-01&rft.volume=81&rft.issue=7&rft.spage=2625&rft.epage=2648&rft.pages=2625-2648&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-019-00621-0&rft_dat=%3Cproquest_cross%3E2252770686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252770686&rft_id=info:pmid/31161559&rfr_iscdi=true