Principal component analysis of nonequilibrium molecular dynamics simulations

Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-05, Vol.150 (20), p.204110-204110
Hauptverfasser: Post, Matthias, Wolf, Steffen, Stock, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204110
container_issue 20
container_start_page 204110
container_title The Journal of chemical physics
container_volume 150
creator Post, Matthias
Wolf, Steffen
Stock, Gerhard
description Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.
doi_str_mv 10.1063/1.5089636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2234493903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234493903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq2XhS8gA25UmJrbpDNLKd6gogtdD7kNpCSTaTIj9O2Nba2g4Crh8PEfzg_AGYITBBm5QZMClhUjbA-MUfrlU1bBfTCGEKO8YpCNwFGMCwghmmJ6CEYEoYJgSMfg-TWYVpqO20x61_lWt33GW25X0cTMN1mbRsvBWCOCGVzmvNVysDxkatVyZ2TMonFp0BvfxhNw0HAb9en2PQbv93dvs8d8_vLwNLud55LSqs8bhjDDigtSIqqwEIKXKh1SCaxKSggrMdWYlkxASaXCrKkkLzil06KRjRLkGFxucrvgl4OOfe1MlNpa3mo_xBpjkhaRCpJEL37RhR9COnCtUKor9ZbU1UbJ4GMMuqm7YBwPqxrB-qvjGtXbjpM93yYOwmm1k9-lJnC9AVGafl3Mznz48JNUd6r5D_9d_QnsX5LR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231108636</pqid></control><display><type>article</type><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</creator><creatorcontrib>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</creatorcontrib><description>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5089636</identifier><identifier>PMID: 31153204</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Energy distribution ; Equilibrium ; Free energy ; Molecular dynamics ; Principal components analysis ; Reaction mechanisms ; Simulation ; Weighting functions</subject><ispartof>The Journal of chemical physics, 2019-05, Vol.150 (20), p.204110-204110</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</citedby><cites>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</cites><orcidid>0000-0001-7804-2604 ; 0000-0003-1752-6175 ; 0000-0002-3302-3044 ; 0000000178042604 ; 0000000317526175 ; 0000000233023044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5089636$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31153204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Post, Matthias</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Stock, Gerhard</creatorcontrib><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</description><subject>Energy distribution</subject><subject>Equilibrium</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Principal components analysis</subject><subject>Reaction mechanisms</subject><subject>Simulation</subject><subject>Weighting functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq2XhS8gA25UmJrbpDNLKd6gogtdD7kNpCSTaTIj9O2Nba2g4Crh8PEfzg_AGYITBBm5QZMClhUjbA-MUfrlU1bBfTCGEKO8YpCNwFGMCwghmmJ6CEYEoYJgSMfg-TWYVpqO20x61_lWt33GW25X0cTMN1mbRsvBWCOCGVzmvNVysDxkatVyZ2TMonFp0BvfxhNw0HAb9en2PQbv93dvs8d8_vLwNLud55LSqs8bhjDDigtSIqqwEIKXKh1SCaxKSggrMdWYlkxASaXCrKkkLzil06KRjRLkGFxucrvgl4OOfe1MlNpa3mo_xBpjkhaRCpJEL37RhR9COnCtUKor9ZbU1UbJ4GMMuqm7YBwPqxrB-qvjGtXbjpM93yYOwmm1k9-lJnC9AVGafl3Mznz48JNUd6r5D_9d_QnsX5LR</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Post, Matthias</creator><creator>Wolf, Steffen</creator><creator>Stock, Gerhard</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7804-2604</orcidid><orcidid>https://orcid.org/0000-0003-1752-6175</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid><orcidid>https://orcid.org/0000000178042604</orcidid><orcidid>https://orcid.org/0000000317526175</orcidid><orcidid>https://orcid.org/0000000233023044</orcidid></search><sort><creationdate>20190528</creationdate><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><author>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy distribution</topic><topic>Equilibrium</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Principal components analysis</topic><topic>Reaction mechanisms</topic><topic>Simulation</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Post, Matthias</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Stock, Gerhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Post, Matthias</au><au>Wolf, Steffen</au><au>Stock, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal component analysis of nonequilibrium molecular dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>150</volume><issue>20</issue><spage>204110</spage><epage>204110</epage><pages>204110-204110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31153204</pmid><doi>10.1063/1.5089636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7804-2604</orcidid><orcidid>https://orcid.org/0000-0003-1752-6175</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid><orcidid>https://orcid.org/0000000178042604</orcidid><orcidid>https://orcid.org/0000000317526175</orcidid><orcidid>https://orcid.org/0000000233023044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-05, Vol.150 (20), p.204110-204110
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2234493903
source AIP Journals Complete; Alma/SFX Local Collection
subjects Energy distribution
Equilibrium
Free energy
Molecular dynamics
Principal components analysis
Reaction mechanisms
Simulation
Weighting functions
title Principal component analysis of nonequilibrium molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20component%20analysis%20of%20nonequilibrium%20molecular%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Post,%20Matthias&rft.date=2019-05-28&rft.volume=150&rft.issue=20&rft.spage=204110&rft.epage=204110&rft.pages=204110-204110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5089636&rft_dat=%3Cproquest_cross%3E2234493903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231108636&rft_id=info:pmid/31153204&rfr_iscdi=true