Principal component analysis of nonequilibrium molecular dynamics simulations
Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-05, Vol.150 (20), p.204110-204110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204110 |
---|---|
container_issue | 20 |
container_start_page | 204110 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Post, Matthias Wolf, Steffen Stock, Gerhard |
description | Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system. |
doi_str_mv | 10.1063/1.5089636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2234493903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234493903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq2XhS8gA25UmJrbpDNLKd6gogtdD7kNpCSTaTIj9O2Nba2g4Crh8PEfzg_AGYITBBm5QZMClhUjbA-MUfrlU1bBfTCGEKO8YpCNwFGMCwghmmJ6CEYEoYJgSMfg-TWYVpqO20x61_lWt33GW25X0cTMN1mbRsvBWCOCGVzmvNVysDxkatVyZ2TMonFp0BvfxhNw0HAb9en2PQbv93dvs8d8_vLwNLud55LSqs8bhjDDigtSIqqwEIKXKh1SCaxKSggrMdWYlkxASaXCrKkkLzil06KRjRLkGFxucrvgl4OOfe1MlNpa3mo_xBpjkhaRCpJEL37RhR9COnCtUKor9ZbU1UbJ4GMMuqm7YBwPqxrB-qvjGtXbjpM93yYOwmm1k9-lJnC9AVGafl3Mznz48JNUd6r5D_9d_QnsX5LR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231108636</pqid></control><display><type>article</type><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</creator><creatorcontrib>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</creatorcontrib><description>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5089636</identifier><identifier>PMID: 31153204</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Energy distribution ; Equilibrium ; Free energy ; Molecular dynamics ; Principal components analysis ; Reaction mechanisms ; Simulation ; Weighting functions</subject><ispartof>The Journal of chemical physics, 2019-05, Vol.150 (20), p.204110-204110</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</citedby><cites>FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</cites><orcidid>0000-0001-7804-2604 ; 0000-0003-1752-6175 ; 0000-0002-3302-3044 ; 0000000178042604 ; 0000000317526175 ; 0000000233023044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5089636$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31153204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Post, Matthias</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Stock, Gerhard</creatorcontrib><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</description><subject>Energy distribution</subject><subject>Equilibrium</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Principal components analysis</subject><subject>Reaction mechanisms</subject><subject>Simulation</subject><subject>Weighting functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq2XhS8gA25UmJrbpDNLKd6gogtdD7kNpCSTaTIj9O2Nba2g4Crh8PEfzg_AGYITBBm5QZMClhUjbA-MUfrlU1bBfTCGEKO8YpCNwFGMCwghmmJ6CEYEoYJgSMfg-TWYVpqO20x61_lWt33GW25X0cTMN1mbRsvBWCOCGVzmvNVysDxkatVyZ2TMonFp0BvfxhNw0HAb9en2PQbv93dvs8d8_vLwNLud55LSqs8bhjDDigtSIqqwEIKXKh1SCaxKSggrMdWYlkxASaXCrKkkLzil06KRjRLkGFxucrvgl4OOfe1MlNpa3mo_xBpjkhaRCpJEL37RhR9COnCtUKor9ZbU1UbJ4GMMuqm7YBwPqxrB-qvjGtXbjpM93yYOwmm1k9-lJnC9AVGafl3Mznz48JNUd6r5D_9d_QnsX5LR</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Post, Matthias</creator><creator>Wolf, Steffen</creator><creator>Stock, Gerhard</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7804-2604</orcidid><orcidid>https://orcid.org/0000-0003-1752-6175</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid><orcidid>https://orcid.org/0000000178042604</orcidid><orcidid>https://orcid.org/0000000317526175</orcidid><orcidid>https://orcid.org/0000000233023044</orcidid></search><sort><creationdate>20190528</creationdate><title>Principal component analysis of nonequilibrium molecular dynamics simulations</title><author>Post, Matthias ; Wolf, Steffen ; Stock, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f61262dab3814d2bbba8d0639b2d84336824e2486b0c4cd26f9ca5a4475fcfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy distribution</topic><topic>Equilibrium</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Principal components analysis</topic><topic>Reaction mechanisms</topic><topic>Simulation</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Post, Matthias</creatorcontrib><creatorcontrib>Wolf, Steffen</creatorcontrib><creatorcontrib>Stock, Gerhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Post, Matthias</au><au>Wolf, Steffen</au><au>Stock, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal component analysis of nonequilibrium molecular dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>150</volume><issue>20</issue><spage>204110</spage><epage>204110</epage><pages>204110-204110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, “targeted MD” is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31153204</pmid><doi>10.1063/1.5089636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7804-2604</orcidid><orcidid>https://orcid.org/0000-0003-1752-6175</orcidid><orcidid>https://orcid.org/0000-0002-3302-3044</orcidid><orcidid>https://orcid.org/0000000178042604</orcidid><orcidid>https://orcid.org/0000000317526175</orcidid><orcidid>https://orcid.org/0000000233023044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-05, Vol.150 (20), p.204110-204110 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2234493903 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Energy distribution Equilibrium Free energy Molecular dynamics Principal components analysis Reaction mechanisms Simulation Weighting functions |
title | Principal component analysis of nonequilibrium molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20component%20analysis%20of%20nonequilibrium%20molecular%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Post,%20Matthias&rft.date=2019-05-28&rft.volume=150&rft.issue=20&rft.spage=204110&rft.epage=204110&rft.pages=204110-204110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5089636&rft_dat=%3Cproquest_cross%3E2234493903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231108636&rft_id=info:pmid/31153204&rfr_iscdi=true |