Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal
In this study, TiO 2 nanotubes (TNTs) and AgCl-modified TNTs nanocomposites with multiple crystal phases were synthesized through a hydrothermal method without calcination. The resultant samples had a large Brunauer-Emmett-Teller surface area. Additionally, the Ag modification process reduced the re...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2019-07, Vol.26 (21), p.22082-22096 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22096 |
---|---|
container_issue | 21 |
container_start_page | 22082 |
container_title | Environmental science and pollution research international |
container_volume | 26 |
creator | Tsai, Cheng-Yen Liu, Chen-Wuing Hsi, Hsing-Cheng Lin, Kuen-Song Lin, Yi-Wen Lai, Li-Chi Weng, Tsung-Nan |
description | In this study, TiO
2
nanotubes (TNTs) and AgCl-modified TNTs nanocomposites with multiple crystal phases were synthesized through a hydrothermal method without calcination. The resultant samples had a large Brunauer-Emmett-Teller surface area. Additionally, the Ag modification process reduced the recombination rate of electron-hole pairs in the synthesized sample and possessed more oxygen vacancy sites. The surface area of the AgCl-modified TNTs was smaller than that of non-modified TNTs sample; however, the nanocomposites exhibited outstanding photocatalytic performance and adsorption properties. AgCl compounds present on the TNTs surface effectively interacted with Hg
0
, improving the dye photodegradation efficiency. The Hg
0
removal efficiencies of the TNTs and AgCl-modified TNTs samples were about 63% and 86%, respectively. The crystal violet (CV) and malachite green (MG) removal efficiencies of the AgCl-modified TNTs sample were around 57% and 72%, respectively. Both dyes photodecomposition efficiencies for AgCl-modified TNTs sample are higher than those of TNTs sample. The oxygen vacancy on the AgCl-modified TNTs surface was determined to be advantageous for OH
−
and arsenate adsorption through ligand exchange. The maximum adsorption quantity of As
5+
calculated by Langmuir equation was 15.38 mg g
−1
(TNTs) and 21.10 mg g
−1
(AgCl-modified TNTs). |
doi_str_mv | 10.1007/s11356-019-05570-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2233862918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233862918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-82ecd50a419ef40ec61b92b5e8be41bb3433f8088a980e3822fd45677993ce8a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EouXjDzAgSywsAZ_tJPaIKr4kBAxlYbGc5FKCErvYaaX-e1JKQWJgOunuufdODyEnwC6AsfwyAog0SxjohKVpzhK1Q8aQgUxyqfUuGTMtZQJCyhE5iPGdMc40z_fJSADIXOtsTF6fA85tsH3jHfU1vZpN2svp4zRSZ50vfTf3sekx0toH6sPMuqak1WpoWFfRxm1bb2iXK9phb1sasPNL2x6Rvdq2EY-_6yF5ubmeTu6Sh6fb-8nVQ1JK4H2iOJZVyqwEjbVkWGZQaF6kqAqUUBRCClErppTViqFQnNeVTLN8-F-UqKw4JOeb3HnwHwuMvemaWGLbWod-EQ3nQqiMa1ADevYHffeL4Ibv1hTnCvIsGyi-ocrgYwxYm3loOhtWBphZmzcb82Ywb77Mm3X06Xf0ouiw-lnZqh4AsQHiMHIzDL-3_4n9BF27jcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232281766</pqid></control><display><type>article</type><title>Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal</title><source>SpringerNature Journals</source><creator>Tsai, Cheng-Yen ; Liu, Chen-Wuing ; Hsi, Hsing-Cheng ; Lin, Kuen-Song ; Lin, Yi-Wen ; Lai, Li-Chi ; Weng, Tsung-Nan</creator><creatorcontrib>Tsai, Cheng-Yen ; Liu, Chen-Wuing ; Hsi, Hsing-Cheng ; Lin, Kuen-Song ; Lin, Yi-Wen ; Lai, Li-Chi ; Weng, Tsung-Nan</creatorcontrib><description>In this study, TiO
2
nanotubes (TNTs) and AgCl-modified TNTs nanocomposites with multiple crystal phases were synthesized through a hydrothermal method without calcination. The resultant samples had a large Brunauer-Emmett-Teller surface area. Additionally, the Ag modification process reduced the recombination rate of electron-hole pairs in the synthesized sample and possessed more oxygen vacancy sites. The surface area of the AgCl-modified TNTs was smaller than that of non-modified TNTs sample; however, the nanocomposites exhibited outstanding photocatalytic performance and adsorption properties. AgCl compounds present on the TNTs surface effectively interacted with Hg
0
, improving the dye photodegradation efficiency. The Hg
0
removal efficiencies of the TNTs and AgCl-modified TNTs samples were about 63% and 86%, respectively. The crystal violet (CV) and malachite green (MG) removal efficiencies of the AgCl-modified TNTs sample were around 57% and 72%, respectively. Both dyes photodecomposition efficiencies for AgCl-modified TNTs sample are higher than those of TNTs sample. The oxygen vacancy on the AgCl-modified TNTs surface was determined to be advantageous for OH
−
and arsenate adsorption through ligand exchange. The maximum adsorption quantity of As
5+
calculated by Langmuir equation was 15.38 mg g
−1
(TNTs) and 21.10 mg g
−1
(AgCl-modified TNTs).</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-019-05570-8</identifier><identifier>PMID: 31147996</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Arsenates ; Arsenic ions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Color removal ; Decomposition reactions ; Dyes ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Heavy metals ; Holes (electron deficiencies) ; Hydrothermal crystal growth ; Malachite green ; Nanocomposites ; Nanotechnology ; Nanotubes ; Oxygen ; Photodecomposition ; Photodegradation ; Recombination ; Research Article ; Silver chloride ; Surface area ; Surface chemistry ; Synthesis ; Titanium dioxide ; Vacancies ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2019-07, Vol.26 (21), p.22082-22096</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-82ecd50a419ef40ec61b92b5e8be41bb3433f8088a980e3822fd45677993ce8a3</citedby><cites>FETCH-LOGICAL-c412t-82ecd50a419ef40ec61b92b5e8be41bb3433f8088a980e3822fd45677993ce8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-019-05570-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-019-05570-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Cheng-Yen</creatorcontrib><creatorcontrib>Liu, Chen-Wuing</creatorcontrib><creatorcontrib>Hsi, Hsing-Cheng</creatorcontrib><creatorcontrib>Lin, Kuen-Song</creatorcontrib><creatorcontrib>Lin, Yi-Wen</creatorcontrib><creatorcontrib>Lai, Li-Chi</creatorcontrib><creatorcontrib>Weng, Tsung-Nan</creatorcontrib><title>Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In this study, TiO
2
nanotubes (TNTs) and AgCl-modified TNTs nanocomposites with multiple crystal phases were synthesized through a hydrothermal method without calcination. The resultant samples had a large Brunauer-Emmett-Teller surface area. Additionally, the Ag modification process reduced the recombination rate of electron-hole pairs in the synthesized sample and possessed more oxygen vacancy sites. The surface area of the AgCl-modified TNTs was smaller than that of non-modified TNTs sample; however, the nanocomposites exhibited outstanding photocatalytic performance and adsorption properties. AgCl compounds present on the TNTs surface effectively interacted with Hg
0
, improving the dye photodegradation efficiency. The Hg
0
removal efficiencies of the TNTs and AgCl-modified TNTs samples were about 63% and 86%, respectively. The crystal violet (CV) and malachite green (MG) removal efficiencies of the AgCl-modified TNTs sample were around 57% and 72%, respectively. Both dyes photodecomposition efficiencies for AgCl-modified TNTs sample are higher than those of TNTs sample. The oxygen vacancy on the AgCl-modified TNTs surface was determined to be advantageous for OH
−
and arsenate adsorption through ligand exchange. The maximum adsorption quantity of As
5+
calculated by Langmuir equation was 15.38 mg g
−1
(TNTs) and 21.10 mg g
−1
(AgCl-modified TNTs).</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Arsenates</subject><subject>Arsenic ions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Color removal</subject><subject>Decomposition reactions</subject><subject>Dyes</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Heavy metals</subject><subject>Holes (electron deficiencies)</subject><subject>Hydrothermal crystal growth</subject><subject>Malachite green</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxygen</subject><subject>Photodecomposition</subject><subject>Photodegradation</subject><subject>Recombination</subject><subject>Research Article</subject><subject>Silver chloride</subject><subject>Surface area</subject><subject>Surface chemistry</subject><subject>Synthesis</subject><subject>Titanium dioxide</subject><subject>Vacancies</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EouXjDzAgSywsAZ_tJPaIKr4kBAxlYbGc5FKCErvYaaX-e1JKQWJgOunuufdODyEnwC6AsfwyAog0SxjohKVpzhK1Q8aQgUxyqfUuGTMtZQJCyhE5iPGdMc40z_fJSADIXOtsTF6fA85tsH3jHfU1vZpN2svp4zRSZ50vfTf3sekx0toH6sPMuqak1WpoWFfRxm1bb2iXK9phb1sasPNL2x6Rvdq2EY-_6yF5ubmeTu6Sh6fb-8nVQ1JK4H2iOJZVyqwEjbVkWGZQaF6kqAqUUBRCClErppTViqFQnNeVTLN8-F-UqKw4JOeb3HnwHwuMvemaWGLbWod-EQ3nQqiMa1ADevYHffeL4Ibv1hTnCvIsGyi-ocrgYwxYm3loOhtWBphZmzcb82Ywb77Mm3X06Xf0ouiw-lnZqh4AsQHiMHIzDL-3_4n9BF27jcg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Tsai, Cheng-Yen</creator><creator>Liu, Chen-Wuing</creator><creator>Hsi, Hsing-Cheng</creator><creator>Lin, Kuen-Song</creator><creator>Lin, Yi-Wen</creator><creator>Lai, Li-Chi</creator><creator>Weng, Tsung-Nan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal</title><author>Tsai, Cheng-Yen ; Liu, Chen-Wuing ; Hsi, Hsing-Cheng ; Lin, Kuen-Song ; Lin, Yi-Wen ; Lai, Li-Chi ; Weng, Tsung-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-82ecd50a419ef40ec61b92b5e8be41bb3433f8088a980e3822fd45677993ce8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Arsenates</topic><topic>Arsenic ions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Color removal</topic><topic>Decomposition reactions</topic><topic>Dyes</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Heavy metals</topic><topic>Holes (electron deficiencies)</topic><topic>Hydrothermal crystal growth</topic><topic>Malachite green</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxygen</topic><topic>Photodecomposition</topic><topic>Photodegradation</topic><topic>Recombination</topic><topic>Research Article</topic><topic>Silver chloride</topic><topic>Surface area</topic><topic>Surface chemistry</topic><topic>Synthesis</topic><topic>Titanium dioxide</topic><topic>Vacancies</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Cheng-Yen</creatorcontrib><creatorcontrib>Liu, Chen-Wuing</creatorcontrib><creatorcontrib>Hsi, Hsing-Cheng</creatorcontrib><creatorcontrib>Lin, Kuen-Song</creatorcontrib><creatorcontrib>Lin, Yi-Wen</creatorcontrib><creatorcontrib>Lai, Li-Chi</creatorcontrib><creatorcontrib>Weng, Tsung-Nan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Cheng-Yen</au><au>Liu, Chen-Wuing</au><au>Hsi, Hsing-Cheng</au><au>Lin, Kuen-Song</au><au>Lin, Yi-Wen</au><au>Lai, Li-Chi</au><au>Weng, Tsung-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>26</volume><issue>21</issue><spage>22082</spage><epage>22096</epage><pages>22082-22096</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In this study, TiO
2
nanotubes (TNTs) and AgCl-modified TNTs nanocomposites with multiple crystal phases were synthesized through a hydrothermal method without calcination. The resultant samples had a large Brunauer-Emmett-Teller surface area. Additionally, the Ag modification process reduced the recombination rate of electron-hole pairs in the synthesized sample and possessed more oxygen vacancy sites. The surface area of the AgCl-modified TNTs was smaller than that of non-modified TNTs sample; however, the nanocomposites exhibited outstanding photocatalytic performance and adsorption properties. AgCl compounds present on the TNTs surface effectively interacted with Hg
0
, improving the dye photodegradation efficiency. The Hg
0
removal efficiencies of the TNTs and AgCl-modified TNTs samples were about 63% and 86%, respectively. The crystal violet (CV) and malachite green (MG) removal efficiencies of the AgCl-modified TNTs sample were around 57% and 72%, respectively. Both dyes photodecomposition efficiencies for AgCl-modified TNTs sample are higher than those of TNTs sample. The oxygen vacancy on the AgCl-modified TNTs surface was determined to be advantageous for OH
−
and arsenate adsorption through ligand exchange. The maximum adsorption quantity of As
5+
calculated by Langmuir equation was 15.38 mg g
−1
(TNTs) and 21.10 mg g
−1
(AgCl-modified TNTs).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31147996</pmid><doi>10.1007/s11356-019-05570-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2019-07, Vol.26 (21), p.22082-22096 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2233862918 |
source | SpringerNature Journals |
subjects | Adsorption Aquatic Pollution Arsenates Arsenic ions Atmospheric Protection/Air Quality Control/Air Pollution Color removal Decomposition reactions Dyes Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Heavy metals Holes (electron deficiencies) Hydrothermal crystal growth Malachite green Nanocomposites Nanotechnology Nanotubes Oxygen Photodecomposition Photodegradation Recombination Research Article Silver chloride Surface area Surface chemistry Synthesis Titanium dioxide Vacancies Waste Water Technology Water Management Water Pollution Control |
title | Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20AgCl/TNTs%20nanocomposites%20for%20organic%20dyes%20and%20inorganic%20heavy%20metal%20removal&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Tsai,%20Cheng-Yen&rft.date=2019-07-01&rft.volume=26&rft.issue=21&rft.spage=22082&rft.epage=22096&rft.pages=22082-22096&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-019-05570-8&rft_dat=%3Cproquest_cross%3E2233862918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232281766&rft_id=info:pmid/31147996&rfr_iscdi=true |