Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair

As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2019-09, Vol.102, p.502-510
Hauptverfasser: Lamboni, Lallepak, Xu, Cheng, Clasohm, Jasmin, Yang, Junchuan, Saumer, Monika, Schäfer, Karl-Herbert, Yang, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue
container_start_page 502
container_title Materials Science & Engineering C
container_volume 102
creator Lamboni, Lallepak
Xu, Cheng
Clasohm, Jasmin
Yang, Junchuan
Saumer, Monika
Schäfer, Karl-Herbert
Yang, Guang
description As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars. [Display omitted] •Patterned bacterial cellulose scaffolds incorporating silk sericin were prepared.•Intestinal smooth muscle and enteric nervous system cells aligned on these substrates.•Silk sericin enhanced cell growth on the structured bacterial cellulose.
doi_str_mv 10.1016/j.msec.2019.04.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2233858428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119307532</els_id><sourcerecordid>2253241053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c32c8f0da85dbd1d93fd6d22f9198db8612b4826d22ec76e25445721a255960b3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNU7G3rH3AhgW66mWtykpnJgBsp1QoFF9p1yCRnrrnOx20-Wvz3Zri1CxfCgZCT57ycvC8h7zjbcsabD_vtFNFugfFuy2Qp8YpsuGpFVTr8hGxYB6qSneCn5CzGPWONEi28IaeCc9ky4Bvy9N2Pv2jE4K2fK5x_mtmio5O3YYkpZJtyKPfe2FQYM1KL45jHJSI1kSYfY0aK887PWN7nHY3WDMMyOpqWJxNcpIcidECb_CPSXU404MH4cEFeD2aM-Pb5PCf3n29-XN9Wd9--fL3-dFdZCTxVVoBVA3NG1a533HVicI0DGDreKderhkMvFawttG2DUEtZt8AN1HXXsF6ck6ujblnjIWNMevJx_YOZcclRAwihaiVBFfTyH3S_5DCX7QpVC5Cc1aJQcKRWg2LAQR-Cn0z4rTnTayx6r9dY9BqLZrLUOvT-WTr3E7qXkb85FODjEcDixaPHoKP1uEbhQ_FOu8X_T_8PK8WgGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253241053</pqid></control><display><type>article</type><title>Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lamboni, Lallepak ; Xu, Cheng ; Clasohm, Jasmin ; Yang, Junchuan ; Saumer, Monika ; Schäfer, Karl-Herbert ; Yang, Guang</creator><creatorcontrib>Lamboni, Lallepak ; Xu, Cheng ; Clasohm, Jasmin ; Yang, Junchuan ; Saumer, Monika ; Schäfer, Karl-Herbert ; Yang, Guang</creatorcontrib><description>As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars. [Display omitted] •Patterned bacterial cellulose scaffolds incorporating silk sericin were prepared.•Intestinal smooth muscle and enteric nervous system cells aligned on these substrates.•Silk sericin enhanced cell growth on the structured bacterial cellulose.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2019.04.043</identifier><identifier>PMID: 31147021</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bacterial cellulose ; Biomaterials ; Biomedical materials ; Blood vessels ; Cell alignment ; Cellulose ; Cytology ; Enteric nervous system ; Heart ; Intestinal tissue engineering ; Materials science ; Morphology ; Muscles ; Nervous system ; Peristalsis ; Physical properties ; Polydimethylsiloxane ; Regeneration ; Silicone resins ; Silk ; Silk sericin ; Smooth muscle ; Smooth muscle cells ; Substrates ; Tissue engineering</subject><ispartof>Materials Science &amp; Engineering C, 2019-09, Vol.102, p.502-510</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c32c8f0da85dbd1d93fd6d22f9198db8612b4826d22ec76e25445721a255960b3</citedby><cites>FETCH-LOGICAL-c421t-c32c8f0da85dbd1d93fd6d22f9198db8612b4826d22ec76e25445721a255960b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493119307532$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamboni, Lallepak</creatorcontrib><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Clasohm, Jasmin</creatorcontrib><creatorcontrib>Yang, Junchuan</creatorcontrib><creatorcontrib>Saumer, Monika</creatorcontrib><creatorcontrib>Schäfer, Karl-Herbert</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><title>Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars. [Display omitted] •Patterned bacterial cellulose scaffolds incorporating silk sericin were prepared.•Intestinal smooth muscle and enteric nervous system cells aligned on these substrates.•Silk sericin enhanced cell growth on the structured bacterial cellulose.</description><subject>Bacterial cellulose</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Cell alignment</subject><subject>Cellulose</subject><subject>Cytology</subject><subject>Enteric nervous system</subject><subject>Heart</subject><subject>Intestinal tissue engineering</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Peristalsis</subject><subject>Physical properties</subject><subject>Polydimethylsiloxane</subject><subject>Regeneration</subject><subject>Silicone resins</subject><subject>Silk</subject><subject>Silk sericin</subject><subject>Smooth muscle</subject><subject>Smooth muscle cells</subject><subject>Substrates</subject><subject>Tissue engineering</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoNU7G3rH3AhgW66mWtykpnJgBsp1QoFF9p1yCRnrrnOx20-Wvz3Zri1CxfCgZCT57ycvC8h7zjbcsabD_vtFNFugfFuy2Qp8YpsuGpFVTr8hGxYB6qSneCn5CzGPWONEi28IaeCc9ky4Bvy9N2Pv2jE4K2fK5x_mtmio5O3YYkpZJtyKPfe2FQYM1KL45jHJSI1kSYfY0aK887PWN7nHY3WDMMyOpqWJxNcpIcidECb_CPSXU404MH4cEFeD2aM-Pb5PCf3n29-XN9Wd9--fL3-dFdZCTxVVoBVA3NG1a533HVicI0DGDreKderhkMvFawttG2DUEtZt8AN1HXXsF6ck6ujblnjIWNMevJx_YOZcclRAwihaiVBFfTyH3S_5DCX7QpVC5Cc1aJQcKRWg2LAQR-Cn0z4rTnTayx6r9dY9BqLZrLUOvT-WTr3E7qXkb85FODjEcDixaPHoKP1uEbhQ_FOu8X_T_8PK8WgGg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lamboni, Lallepak</creator><creator>Xu, Cheng</creator><creator>Clasohm, Jasmin</creator><creator>Yang, Junchuan</creator><creator>Saumer, Monika</creator><creator>Schäfer, Karl-Herbert</creator><creator>Yang, Guang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair</title><author>Lamboni, Lallepak ; Xu, Cheng ; Clasohm, Jasmin ; Yang, Junchuan ; Saumer, Monika ; Schäfer, Karl-Herbert ; Yang, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c32c8f0da85dbd1d93fd6d22f9198db8612b4826d22ec76e25445721a255960b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial cellulose</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Cell alignment</topic><topic>Cellulose</topic><topic>Cytology</topic><topic>Enteric nervous system</topic><topic>Heart</topic><topic>Intestinal tissue engineering</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Peristalsis</topic><topic>Physical properties</topic><topic>Polydimethylsiloxane</topic><topic>Regeneration</topic><topic>Silicone resins</topic><topic>Silk</topic><topic>Silk sericin</topic><topic>Smooth muscle</topic><topic>Smooth muscle cells</topic><topic>Substrates</topic><topic>Tissue engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Lamboni, Lallepak</creatorcontrib><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Clasohm, Jasmin</creatorcontrib><creatorcontrib>Yang, Junchuan</creatorcontrib><creatorcontrib>Saumer, Monika</creatorcontrib><creatorcontrib>Schäfer, Karl-Herbert</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamboni, Lallepak</au><au>Xu, Cheng</au><au>Clasohm, Jasmin</au><au>Yang, Junchuan</au><au>Saumer, Monika</au><au>Schäfer, Karl-Herbert</au><au>Yang, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>102</volume><spage>502</spage><epage>510</epage><pages>502-510</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars. [Display omitted] •Patterned bacterial cellulose scaffolds incorporating silk sericin were prepared.•Intestinal smooth muscle and enteric nervous system cells aligned on these substrates.•Silk sericin enhanced cell growth on the structured bacterial cellulose.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31147021</pmid><doi>10.1016/j.msec.2019.04.043</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2019-09, Vol.102, p.502-510
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_2233858428
source Elsevier ScienceDirect Journals Complete
subjects Bacterial cellulose
Biomaterials
Biomedical materials
Blood vessels
Cell alignment
Cellulose
Cytology
Enteric nervous system
Heart
Intestinal tissue engineering
Materials science
Morphology
Muscles
Nervous system
Peristalsis
Physical properties
Polydimethylsiloxane
Regeneration
Silicone resins
Silk
Silk sericin
Smooth muscle
Smooth muscle cells
Substrates
Tissue engineering
title Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silk%20sericin-enhanced%20microstructured%20bacterial%20cellulose%20as%20tissue%20engineering%20scaffold%20towards%20prospective%20gut%20repair&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Lamboni,%20Lallepak&rft.date=2019-09-01&rft.volume=102&rft.spage=502&rft.epage=510&rft.pages=502-510&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2019.04.043&rft_dat=%3Cproquest_cross%3E2253241053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253241053&rft_id=info:pmid/31147021&rft_els_id=S0928493119307532&rfr_iscdi=true