Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions

Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p–n heterost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-06, Vol.11 (23), p.20923-20942
Hauptverfasser: Nayak, Susanginee, Swain, Gayatri, Parida, Kulamani
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20942
container_issue 23
container_start_page 20923
container_title ACS applied materials & interfaces
container_volume 11
creator Nayak, Susanginee
Swain, Gayatri
Parida, Kulamani
description Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p–n heterostructure could significantly replicate the inherent power of natural photosynthesis, which is the key point to affect the transportation of photoinduced exciton pairs. In this finding, a series of p-type MoS2 loaded with n-type NiFe-layered double hydroxide (LDH) forming a heterostructure MoS2/NiFe LDH were designed by electrostatic self-assembled chemistry and an in situ hydrothermal strategy for photocatalytic rhodamine B (RhB) dye degradation and H2 production. The creation of p–n heterojunctions of type-II and Z-scheme mode of charge transfer modified the optical and electronic property of the as-synthesized MSLDH3, thereafter promoting the generation, separation, and migration of photoinduced electron–hole pairs. The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10.9 and 19.2 times higher than that of NiFe LDH and MoS2, respectively. Last but not the least, heterostructure MSLDH3 possesses practical stability for its resultant enhanced photocatalytic activity with recyclability for everyday life.
doi_str_mv 10.1021/acsami.9b06511
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2233853700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233853700</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-48118504dc127fbccd042485178a948529201e293bc17fd4602287822a1203633</originalsourceid><addsrcrecordid>eNo9Uctu2zAQFIoEyKvXnHksCjghl5RFHdPEjgs4aVG3l14EmlpFNCTS4cNAbvmFoF_Xa74kcmzkNLuLmdkBJsvOGb1gFNil0kH15qJc0nHO2KfsmJVCjCTkcPAxC3GUnYSwonTMgebH2f-JbZXVWJOfrYtOq6i6p2g0udLRbEw0GIhryK_2G7nBB69qFY2zRNmazIBMNq5L74fGu54YSxYmJjJ1vt_xBmlskUw61NG7ENXWeoYRt4tPOiaP5M4t4PLeTJHMb2bkXlmnXb92wUQc1N6lh_bd5e_r88tCt9gPEtRDbBN6sjGKrF-f_9m97SpZvX0dzrLDRnUBP-_xNPsznfy-no3mP26_X1_NRwpkGUdCMiZzKmrNoGiWWtdUgJA5K6QqB4QSKEMo-VKzoqnFmALIQgIoBpSPOT_Nvux81949Jgyx6k3Q2HXKokuhAuBc5rygdKB-3VGHqqqVS94OwSpGq21_1a6_at8ffwOz65Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233853700</pqid></control><display><type>article</type><title>Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions</title><source>American Chemical Society Journals</source><creator>Nayak, Susanginee ; Swain, Gayatri ; Parida, Kulamani</creator><creatorcontrib>Nayak, Susanginee ; Swain, Gayatri ; Parida, Kulamani</creatorcontrib><description>Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p–n heterostructure could significantly replicate the inherent power of natural photosynthesis, which is the key point to affect the transportation of photoinduced exciton pairs. In this finding, a series of p-type MoS2 loaded with n-type NiFe-layered double hydroxide (LDH) forming a heterostructure MoS2/NiFe LDH were designed by electrostatic self-assembled chemistry and an in situ hydrothermal strategy for photocatalytic rhodamine B (RhB) dye degradation and H2 production. The creation of p–n heterojunctions of type-II and Z-scheme mode of charge transfer modified the optical and electronic property of the as-synthesized MSLDH3, thereafter promoting the generation, separation, and migration of photoinduced electron–hole pairs. The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10.9 and 19.2 times higher than that of NiFe LDH and MoS2, respectively. Last but not the least, heterostructure MSLDH3 possesses practical stability for its resultant enhanced photocatalytic activity with recyclability for everyday life.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b06511</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-06, Vol.11 (23), p.20923-20942</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7807-5561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b06511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b06511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Nayak, Susanginee</creatorcontrib><creatorcontrib>Swain, Gayatri</creatorcontrib><creatorcontrib>Parida, Kulamani</creatorcontrib><title>Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p–n heterostructure could significantly replicate the inherent power of natural photosynthesis, which is the key point to affect the transportation of photoinduced exciton pairs. In this finding, a series of p-type MoS2 loaded with n-type NiFe-layered double hydroxide (LDH) forming a heterostructure MoS2/NiFe LDH were designed by electrostatic self-assembled chemistry and an in situ hydrothermal strategy for photocatalytic rhodamine B (RhB) dye degradation and H2 production. The creation of p–n heterojunctions of type-II and Z-scheme mode of charge transfer modified the optical and electronic property of the as-synthesized MSLDH3, thereafter promoting the generation, separation, and migration of photoinduced electron–hole pairs. The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10.9 and 19.2 times higher than that of NiFe LDH and MoS2, respectively. Last but not the least, heterostructure MSLDH3 possesses practical stability for its resultant enhanced photocatalytic activity with recyclability for everyday life.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9Uctu2zAQFIoEyKvXnHksCjghl5RFHdPEjgs4aVG3l14EmlpFNCTS4cNAbvmFoF_Xa74kcmzkNLuLmdkBJsvOGb1gFNil0kH15qJc0nHO2KfsmJVCjCTkcPAxC3GUnYSwonTMgebH2f-JbZXVWJOfrYtOq6i6p2g0udLRbEw0GIhryK_2G7nBB69qFY2zRNmazIBMNq5L74fGu54YSxYmJjJ1vt_xBmlskUw61NG7ENXWeoYRt4tPOiaP5M4t4PLeTJHMb2bkXlmnXb92wUQc1N6lh_bd5e_r88tCt9gPEtRDbBN6sjGKrF-f_9m97SpZvX0dzrLDRnUBP-_xNPsznfy-no3mP26_X1_NRwpkGUdCMiZzKmrNoGiWWtdUgJA5K6QqB4QSKEMo-VKzoqnFmALIQgIoBpSPOT_Nvux81949Jgyx6k3Q2HXKokuhAuBc5rygdKB-3VGHqqqVS94OwSpGq21_1a6_at8ffwOz65Og</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Nayak, Susanginee</creator><creator>Swain, Gayatri</creator><creator>Parida, Kulamani</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7807-5561</orcidid></search><sort><creationdate>20190612</creationdate><title>Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions</title><author>Nayak, Susanginee ; Swain, Gayatri ; Parida, Kulamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-48118504dc127fbccd042485178a948529201e293bc17fd4602287822a1203633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nayak, Susanginee</creatorcontrib><creatorcontrib>Swain, Gayatri</creatorcontrib><creatorcontrib>Parida, Kulamani</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nayak, Susanginee</au><au>Swain, Gayatri</au><au>Parida, Kulamani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-06-12</date><risdate>2019</risdate><volume>11</volume><issue>23</issue><spage>20923</spage><epage>20942</epage><pages>20923-20942</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p–n heterostructure could significantly replicate the inherent power of natural photosynthesis, which is the key point to affect the transportation of photoinduced exciton pairs. In this finding, a series of p-type MoS2 loaded with n-type NiFe-layered double hydroxide (LDH) forming a heterostructure MoS2/NiFe LDH were designed by electrostatic self-assembled chemistry and an in situ hydrothermal strategy for photocatalytic rhodamine B (RhB) dye degradation and H2 production. The creation of p–n heterojunctions of type-II and Z-scheme mode of charge transfer modified the optical and electronic property of the as-synthesized MSLDH3, thereafter promoting the generation, separation, and migration of photoinduced electron–hole pairs. The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10.9 and 19.2 times higher than that of NiFe LDH and MoS2, respectively. Last but not the least, heterostructure MSLDH3 possesses practical stability for its resultant enhanced photocatalytic activity with recyclability for everyday life.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b06511</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7807-5561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-06, Vol.11 (23), p.20923-20942
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2233853700
source American Chemical Society Journals
title Enhanced Photocatalytic Activities of RhB Degradation and H2 Evolution from in Situ Formation of the Electrostatic Heterostructure MoS2/NiFe LDH Nanocomposite through the Z‑Scheme Mechanism via p–n Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Photocatalytic%20Activities%20of%20RhB%20Degradation%20and%20H2%20Evolution%20from%20in%20Situ%20Formation%20of%20the%20Electrostatic%20Heterostructure%20MoS2/NiFe%20LDH%20Nanocomposite%20through%20the%20Z%E2%80%91Scheme%20Mechanism%20via%20p%E2%80%93n%20Heterojunctions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nayak,%20Susanginee&rft.date=2019-06-12&rft.volume=11&rft.issue=23&rft.spage=20923&rft.epage=20942&rft.pages=20923-20942&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b06511&rft_dat=%3Cproquest_acs_j%3E2233853700%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233853700&rft_id=info:pmid/&rfr_iscdi=true