NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress
The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) h...
Gespeichert in:
Veröffentlicht in: | Comparative biochemistry and physiology. Toxicology & pharmacology 2019-09, Vol.223, p.106-114 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | Comparative biochemistry and physiology. Toxicology & pharmacology |
container_volume | 223 |
creator | Mahneva, Olena Caplan, Stacee Lee Ivko, Polina Dawson-Scully, Ken Milton, Sarah L. |
description | The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20–24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
[Display omitted]
•NO/cGMP/PKG activation protects Drosophila S2 cells during acute hypoxia.•MitoKATP channels mediate NO/cGMP/PKG-induced cellular protection during acute hypoxia.•Activation of NO/cGMP/PKG signaling pathway does not decrease intracellular oxidative stress induced by chemical hypoxia.•Activation of NO/cGMP/PKG signaling pathway during a hypoxic stress increases mitochondrial membrane potential. |
doi_str_mv | 10.1016/j.cbpc.2019.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2233853480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532045619301863</els_id><sourcerecordid>2233853480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6a8ce52ad50bc71b787010bf5aeeceb49b756d03d1778e59bbae28ae4b6b9d643</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwBxhQRpak5zh2HIkFFSiIQjvAbNnOVXXVNiFOKvrvcdXCyHQn3XtP9z5CrikkFKgYLhNrapukQIsEeAKUnZA-lbmMqeDFadg5S2PIuOiRC--XAMAzKs5Jj1HKQQrZJ5P36dCO32bD2es40rZ1W926ahPVTdWibX300FS-qhdupSOLq5WPfGeW4YJl1FbRYldX385Gvm3Q-0tyNtcrj1fHOSCfT48fo-d4Mh2_jO4nsWVctLHQ0iJPdcnB2JyaXOZAwcy5RrRossLkXJTASprnEnlhjMZUasyMMEUpMjYgt4fc8OVXh75Va-f33-kNVp1XacqY5CyTEKTpQWpDD9_gXNWNW-tmpyioPUW1VHuKak9RAVeBYjDdHPM7s8byz_KLLQjuDgIMLbcOG-Wtw43F0jWBjSor91_-D0aOg6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233853480</pqid></control><display><type>article</type><title>NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mahneva, Olena ; Caplan, Stacee Lee ; Ivko, Polina ; Dawson-Scully, Ken ; Milton, Sarah L.</creator><creatorcontrib>Mahneva, Olena ; Caplan, Stacee Lee ; Ivko, Polina ; Dawson-Scully, Ken ; Milton, Sarah L.</creatorcontrib><description>The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20–24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
[Display omitted]
•NO/cGMP/PKG activation protects Drosophila S2 cells during acute hypoxia.•MitoKATP channels mediate NO/cGMP/PKG-induced cellular protection during acute hypoxia.•Activation of NO/cGMP/PKG signaling pathway does not decrease intracellular oxidative stress induced by chemical hypoxia.•Activation of NO/cGMP/PKG signaling pathway during a hypoxic stress increases mitochondrial membrane potential.</description><identifier>ISSN: 1532-0456</identifier><identifier>EISSN: 1878-1659</identifier><identifier>DOI: 10.1016/j.cbpc.2019.05.013</identifier><identifier>PMID: 31150868</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Hypoxia - drug effects ; Cell Line ; cGMP-dependent protein kinase ; Cobalt - toxicity ; Cobalt chloride ; Cyclic GMP - analogs & derivatives ; Cyclic GMP - metabolism ; Cyclic GMP - pharmacology ; Cyclic GMP-Dependent Protein Kinases - metabolism ; Drosophila melanogaster - cytology ; Drosophila melanogaster - drug effects ; Drosophila Proteins - metabolism ; Enzyme Activation ; Fruit fly ; Hypoxia ; Hypoxia - metabolism ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; mitoKATP ion channels ; Nitric Oxide - metabolism ; Oxidative Stress - drug effects ; Potassium Channels - metabolism ; Signal Transduction - drug effects ; Stress, Physiological</subject><ispartof>Comparative biochemistry and physiology. Toxicology & pharmacology, 2019-09, Vol.223, p.106-114</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6a8ce52ad50bc71b787010bf5aeeceb49b756d03d1778e59bbae28ae4b6b9d643</citedby><cites>FETCH-LOGICAL-c356t-6a8ce52ad50bc71b787010bf5aeeceb49b756d03d1778e59bbae28ae4b6b9d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1532045619301863$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31150868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahneva, Olena</creatorcontrib><creatorcontrib>Caplan, Stacee Lee</creatorcontrib><creatorcontrib>Ivko, Polina</creatorcontrib><creatorcontrib>Dawson-Scully, Ken</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><title>NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress</title><title>Comparative biochemistry and physiology. Toxicology & pharmacology</title><addtitle>Comp Biochem Physiol C Toxicol Pharmacol</addtitle><description>The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20–24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
[Display omitted]
•NO/cGMP/PKG activation protects Drosophila S2 cells during acute hypoxia.•MitoKATP channels mediate NO/cGMP/PKG-induced cellular protection during acute hypoxia.•Activation of NO/cGMP/PKG signaling pathway does not decrease intracellular oxidative stress induced by chemical hypoxia.•Activation of NO/cGMP/PKG signaling pathway during a hypoxic stress increases mitochondrial membrane potential.</description><subject>Animals</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line</subject><subject>cGMP-dependent protein kinase</subject><subject>Cobalt - toxicity</subject><subject>Cobalt chloride</subject><subject>Cyclic GMP - analogs & derivatives</subject><subject>Cyclic GMP - metabolism</subject><subject>Cyclic GMP - pharmacology</subject><subject>Cyclic GMP-Dependent Protein Kinases - metabolism</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>Fruit fly</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>mitoKATP ion channels</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Stress, Physiological</subject><issn>1532-0456</issn><issn>1878-1659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDFPwzAQhS0EoqXwBxhQRpak5zh2HIkFFSiIQjvAbNnOVXXVNiFOKvrvcdXCyHQn3XtP9z5CrikkFKgYLhNrapukQIsEeAKUnZA-lbmMqeDFadg5S2PIuOiRC--XAMAzKs5Jj1HKQQrZJ5P36dCO32bD2es40rZ1W926ahPVTdWibX300FS-qhdupSOLq5WPfGeW4YJl1FbRYldX385Gvm3Q-0tyNtcrj1fHOSCfT48fo-d4Mh2_jO4nsWVctLHQ0iJPdcnB2JyaXOZAwcy5RrRossLkXJTASprnEnlhjMZUasyMMEUpMjYgt4fc8OVXh75Va-f33-kNVp1XacqY5CyTEKTpQWpDD9_gXNWNW-tmpyioPUW1VHuKak9RAVeBYjDdHPM7s8byz_KLLQjuDgIMLbcOG-Wtw43F0jWBjSor91_-D0aOg6M</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Mahneva, Olena</creator><creator>Caplan, Stacee Lee</creator><creator>Ivko, Polina</creator><creator>Dawson-Scully, Ken</creator><creator>Milton, Sarah L.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201909</creationdate><title>NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress</title><author>Mahneva, Olena ; Caplan, Stacee Lee ; Ivko, Polina ; Dawson-Scully, Ken ; Milton, Sarah L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6a8ce52ad50bc71b787010bf5aeeceb49b756d03d1778e59bbae28ae4b6b9d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line</topic><topic>cGMP-dependent protein kinase</topic><topic>Cobalt - toxicity</topic><topic>Cobalt chloride</topic><topic>Cyclic GMP - analogs & derivatives</topic><topic>Cyclic GMP - metabolism</topic><topic>Cyclic GMP - pharmacology</topic><topic>Cyclic GMP-Dependent Protein Kinases - metabolism</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>Fruit fly</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>mitoKATP ion channels</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahneva, Olena</creatorcontrib><creatorcontrib>Caplan, Stacee Lee</creatorcontrib><creatorcontrib>Ivko, Polina</creatorcontrib><creatorcontrib>Dawson-Scully, Ken</creatorcontrib><creatorcontrib>Milton, Sarah L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Comparative biochemistry and physiology. Toxicology & pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahneva, Olena</au><au>Caplan, Stacee Lee</au><au>Ivko, Polina</au><au>Dawson-Scully, Ken</au><au>Milton, Sarah L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress</atitle><jtitle>Comparative biochemistry and physiology. Toxicology & pharmacology</jtitle><addtitle>Comp Biochem Physiol C Toxicol Pharmacol</addtitle><date>2019-09</date><risdate>2019</risdate><volume>223</volume><spage>106</spage><epage>114</epage><pages>106-114</pages><issn>1532-0456</issn><eissn>1878-1659</eissn><abstract>The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20–24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
[Display omitted]
•NO/cGMP/PKG activation protects Drosophila S2 cells during acute hypoxia.•MitoKATP channels mediate NO/cGMP/PKG-induced cellular protection during acute hypoxia.•Activation of NO/cGMP/PKG signaling pathway does not decrease intracellular oxidative stress induced by chemical hypoxia.•Activation of NO/cGMP/PKG signaling pathway during a hypoxic stress increases mitochondrial membrane potential.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31150868</pmid><doi>10.1016/j.cbpc.2019.05.013</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0456 |
ispartof | Comparative biochemistry and physiology. Toxicology & pharmacology, 2019-09, Vol.223, p.106-114 |
issn | 1532-0456 1878-1659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2233853480 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Cell Hypoxia - drug effects Cell Line cGMP-dependent protein kinase Cobalt - toxicity Cobalt chloride Cyclic GMP - analogs & derivatives Cyclic GMP - metabolism Cyclic GMP - pharmacology Cyclic GMP-Dependent Protein Kinases - metabolism Drosophila melanogaster - cytology Drosophila melanogaster - drug effects Drosophila Proteins - metabolism Enzyme Activation Fruit fly Hypoxia Hypoxia - metabolism Membrane Potential, Mitochondrial - drug effects Mitochondria mitoKATP ion channels Nitric Oxide - metabolism Oxidative Stress - drug effects Potassium Channels - metabolism Signal Transduction - drug effects Stress, Physiological |
title | NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NO/cGMP/PKG%20activation%20protects%20Drosophila%20cells%20subjected%20to%20hypoxic%20stress&rft.jtitle=Comparative%20biochemistry%20and%20physiology.%20Toxicology%20&%20pharmacology&rft.au=Mahneva,%20Olena&rft.date=2019-09&rft.volume=223&rft.spage=106&rft.epage=114&rft.pages=106-114&rft.issn=1532-0456&rft.eissn=1878-1659&rft_id=info:doi/10.1016/j.cbpc.2019.05.013&rft_dat=%3Cproquest_cross%3E2233853480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233853480&rft_id=info:pmid/31150868&rft_els_id=S1532045619301863&rfr_iscdi=true |