Molecular-Level Characterization of Oil-Soluble Ketone/Aldehyde Photo-Oxidation Products by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Similarity Between Microcosm and Field Samples
We present a solid-phase extraction method followed by derivatization with a charged tag to characterize ketone/aldehyde-containing functionalities (proposed photo-oxidation transformation products) in weathered petroleum by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). A...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2019-06, Vol.53 (12), p.6887-6894 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a solid-phase extraction method followed by derivatization with a charged tag to characterize ketone/aldehyde-containing functionalities (proposed photo-oxidation transformation products) in weathered petroleum by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). A photo-oxidation-only microcosm mimics solar irradiation of crude oil in the environment after an oil spill. A biodegradation-only microcosm enables independent determination as to which of the two weathering processes contributes to the formation of oil-soluble ketone/aldehyde species. Results confirm that photo-oxidation produces ketones/aldehydes in crude oil when exposed to solar radiation in laboratory experiments, whereas biodegraded oil samples do not produce ketone/aldehyde compounds. Field samples collected after different time periods and locations after the Deepwater Horizon oil spill are also shown to contain ketones/aldehydes, and comparison of field and photo-oxidation-only microcosm transformation products reveal remarkable similarity. These results indicate that the photo-oxidation microcosm comprehensively represents ketone/aldehyde-formation products in the field, whereas the biodegradation microcosm does not. Solid-phase extraction coupled with derivatization leads to selective identification of ketone/aldehyde species by MS. Although improved dynamic range and slightly reduced mass spectral complexity is achieved by separation/derivatization, comprehensive molecular characterization still requires mass resolving power and mass accuracy provided by FT-ICR MS. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.9b00908 |