Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment
A new and unusual type of fossil, siliceous hot-spring deposit (sinter)-comprising monomictic, quartzose conglomerate encrusted with silicified microbial laminates-has been recognized in distal portions of Jurassic and Miocene paleo-geothermal fields of South and North America, respectively. The sil...
Gespeichert in:
Veröffentlicht in: | Astrobiology 2019-12, Vol.19 (12), p.1433-1441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1441 |
---|---|
container_issue | 12 |
container_start_page | 1433 |
container_title | Astrobiology |
container_volume | 19 |
creator | Guido, Diego M Campbell, Kathleen A |
description | A new and unusual type of fossil, siliceous hot-spring deposit (sinter)-comprising monomictic, quartzose conglomerate encrusted with silicified microbial laminates-has been recognized in distal portions of Jurassic and Miocene paleo-geothermal fields of South and North America, respectively. The siliceous clasts are inferred to have originated as conduit-delivered hydrothermal silica gel, owing to their general plastic morphologies, which were then locally reworked and redistributed in geothermally influenced stream paleoenvironments. Today, hot-spring-fed streams and creeks, in places with silica-armored pavements, host microbial mats coating streambeds and/or growing over, and silicifying at, stream air-water interfaces, for example, in Yellowstone National Park (USA) and Waimangu Volcanic Valley (New Zealand). However, the modern deposits do not contain the plastically deformed silica cobbles evident in Mesozoic and Cenozoic examples described herein. Moreover, the fossil microbial laminates of this study are relatively dense and strongly coat the silica cobbles, suggesting the mats stabilized the clasts under fully submerged and hot, high-energy conditions. Thus, this new sinter facies, typically found a few kilometers from main spring-vent areas, is a perhaps unexpected extreme environment in which life took hold in hydrothermal-fluvial settings of the past, and may serve as an additional target in the search for fossil biosignatures of early Earth and possibly Mars. |
doi_str_mv | 10.1089/ast.2018.1998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232125152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322156000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a4d09803ed57e96e62225171e4b0a75a3f1e46341002d3adb337217b4decbbb43</originalsourceid><addsrcrecordid>eNpdkTlPAzEQhS0EIuEoaZElGpoNY3vPEkWBIBGBFBCl5d2dEEfedbAdjn-PowAF1bzimzfHI-SMwYhBWV0pH0YcWDliVVXukSHLsiIpoYD9rRYsYVCkA3Lk_QqACV7lh2QgGGQVL8shWT6a6KAbOtdGN4qObf9qbIdOBaQfOiyp6unkMzjs7HqpDdKZbpyttTJ0poLTn1T3VNGpDclL7HF0HlnV0Udl0GL_rp3tO-zDCTlYKOPx9Kcek-ebydN4mtw_3N6Nr--TRnAWEpW2UJUgsM0KrHLMOecZKximNagiU2IRZS5SBsBbodpaiIKzok5bbOq6TsUxudz5rp1926APstO-QWNUj3bjJedxTrTMeEQv_qEru3F93E5GiLMsB4BIJTsqnu29w4VcO90p9yUZyG0EMj5QbiOQ2wgif_7juqk7bP_o35-Lb4nVgXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322156000</pqid></control><display><type>article</type><title>Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment</title><source>Alma/SFX Local Collection</source><creator>Guido, Diego M ; Campbell, Kathleen A</creator><creatorcontrib>Guido, Diego M ; Campbell, Kathleen A</creatorcontrib><description>A new and unusual type of fossil, siliceous hot-spring deposit (sinter)-comprising monomictic, quartzose conglomerate encrusted with silicified microbial laminates-has been recognized in distal portions of Jurassic and Miocene paleo-geothermal fields of South and North America, respectively. The siliceous clasts are inferred to have originated as conduit-delivered hydrothermal silica gel, owing to their general plastic morphologies, which were then locally reworked and redistributed in geothermally influenced stream paleoenvironments. Today, hot-spring-fed streams and creeks, in places with silica-armored pavements, host microbial mats coating streambeds and/or growing over, and silicifying at, stream air-water interfaces, for example, in Yellowstone National Park (USA) and Waimangu Volcanic Valley (New Zealand). However, the modern deposits do not contain the plastically deformed silica cobbles evident in Mesozoic and Cenozoic examples described herein. Moreover, the fossil microbial laminates of this study are relatively dense and strongly coat the silica cobbles, suggesting the mats stabilized the clasts under fully submerged and hot, high-energy conditions. Thus, this new sinter facies, typically found a few kilometers from main spring-vent areas, is a perhaps unexpected extreme environment in which life took hold in hydrothermal-fluvial settings of the past, and may serve as an additional target in the search for fossil biosignatures of early Earth and possibly Mars.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2018.1998</identifier><identifier>PMID: 31059288</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Air-water interface ; Cenozoic ; Cobblestone ; Conglomerates ; Creeks & streams ; Earth ; Extreme environments ; Fossils ; Gels ; Glacial streams ; Hot springs ; Hydrothermal fields ; Interfaces ; Jurassic ; Laminates ; Mesozoic ; Microbial mats ; Microorganisms ; Miocene ; Morphology ; National parks ; Paleoenvironments ; Rivers ; Sedimentary facies ; Silica ; Silica gel ; Silicon dioxide ; Spring ; Streambeds</subject><ispartof>Astrobiology, 2019-12, Vol.19 (12), p.1433-1441</ispartof><rights>Copyright Mary Ann Liebert, Inc. Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a4d09803ed57e96e62225171e4b0a75a3f1e46341002d3adb337217b4decbbb43</citedby><cites>FETCH-LOGICAL-c321t-a4d09803ed57e96e62225171e4b0a75a3f1e46341002d3adb337217b4decbbb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guido, Diego M</creatorcontrib><creatorcontrib>Campbell, Kathleen A</creatorcontrib><title>Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>A new and unusual type of fossil, siliceous hot-spring deposit (sinter)-comprising monomictic, quartzose conglomerate encrusted with silicified microbial laminates-has been recognized in distal portions of Jurassic and Miocene paleo-geothermal fields of South and North America, respectively. The siliceous clasts are inferred to have originated as conduit-delivered hydrothermal silica gel, owing to their general plastic morphologies, which were then locally reworked and redistributed in geothermally influenced stream paleoenvironments. Today, hot-spring-fed streams and creeks, in places with silica-armored pavements, host microbial mats coating streambeds and/or growing over, and silicifying at, stream air-water interfaces, for example, in Yellowstone National Park (USA) and Waimangu Volcanic Valley (New Zealand). However, the modern deposits do not contain the plastically deformed silica cobbles evident in Mesozoic and Cenozoic examples described herein. Moreover, the fossil microbial laminates of this study are relatively dense and strongly coat the silica cobbles, suggesting the mats stabilized the clasts under fully submerged and hot, high-energy conditions. Thus, this new sinter facies, typically found a few kilometers from main spring-vent areas, is a perhaps unexpected extreme environment in which life took hold in hydrothermal-fluvial settings of the past, and may serve as an additional target in the search for fossil biosignatures of early Earth and possibly Mars.</description><subject>Air-water interface</subject><subject>Cenozoic</subject><subject>Cobblestone</subject><subject>Conglomerates</subject><subject>Creeks & streams</subject><subject>Earth</subject><subject>Extreme environments</subject><subject>Fossils</subject><subject>Gels</subject><subject>Glacial streams</subject><subject>Hot springs</subject><subject>Hydrothermal fields</subject><subject>Interfaces</subject><subject>Jurassic</subject><subject>Laminates</subject><subject>Mesozoic</subject><subject>Microbial mats</subject><subject>Microorganisms</subject><subject>Miocene</subject><subject>Morphology</subject><subject>National parks</subject><subject>Paleoenvironments</subject><subject>Rivers</subject><subject>Sedimentary facies</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Spring</subject><subject>Streambeds</subject><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkTlPAzEQhS0EIuEoaZElGpoNY3vPEkWBIBGBFBCl5d2dEEfedbAdjn-PowAF1bzimzfHI-SMwYhBWV0pH0YcWDliVVXukSHLsiIpoYD9rRYsYVCkA3Lk_QqACV7lh2QgGGQVL8shWT6a6KAbOtdGN4qObf9qbIdOBaQfOiyp6unkMzjs7HqpDdKZbpyttTJ0poLTn1T3VNGpDclL7HF0HlnV0Udl0GL_rp3tO-zDCTlYKOPx9Kcek-ebydN4mtw_3N6Nr--TRnAWEpW2UJUgsM0KrHLMOecZKximNagiU2IRZS5SBsBbodpaiIKzok5bbOq6TsUxudz5rp1926APstO-QWNUj3bjJedxTrTMeEQv_qEru3F93E5GiLMsB4BIJTsqnu29w4VcO90p9yUZyG0EMj5QbiOQ2wgif_7juqk7bP_o35-Lb4nVgXI</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Guido, Diego M</creator><creator>Campbell, Kathleen A</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>201912</creationdate><title>Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment</title><author>Guido, Diego M ; Campbell, Kathleen A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a4d09803ed57e96e62225171e4b0a75a3f1e46341002d3adb337217b4decbbb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air-water interface</topic><topic>Cenozoic</topic><topic>Cobblestone</topic><topic>Conglomerates</topic><topic>Creeks & streams</topic><topic>Earth</topic><topic>Extreme environments</topic><topic>Fossils</topic><topic>Gels</topic><topic>Glacial streams</topic><topic>Hot springs</topic><topic>Hydrothermal fields</topic><topic>Interfaces</topic><topic>Jurassic</topic><topic>Laminates</topic><topic>Mesozoic</topic><topic>Microbial mats</topic><topic>Microorganisms</topic><topic>Miocene</topic><topic>Morphology</topic><topic>National parks</topic><topic>Paleoenvironments</topic><topic>Rivers</topic><topic>Sedimentary facies</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Spring</topic><topic>Streambeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guido, Diego M</creatorcontrib><creatorcontrib>Campbell, Kathleen A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guido, Diego M</au><au>Campbell, Kathleen A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2019-12</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>1433</spage><epage>1441</epage><pages>1433-1441</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>A new and unusual type of fossil, siliceous hot-spring deposit (sinter)-comprising monomictic, quartzose conglomerate encrusted with silicified microbial laminates-has been recognized in distal portions of Jurassic and Miocene paleo-geothermal fields of South and North America, respectively. The siliceous clasts are inferred to have originated as conduit-delivered hydrothermal silica gel, owing to their general plastic morphologies, which were then locally reworked and redistributed in geothermally influenced stream paleoenvironments. Today, hot-spring-fed streams and creeks, in places with silica-armored pavements, host microbial mats coating streambeds and/or growing over, and silicifying at, stream air-water interfaces, for example, in Yellowstone National Park (USA) and Waimangu Volcanic Valley (New Zealand). However, the modern deposits do not contain the plastically deformed silica cobbles evident in Mesozoic and Cenozoic examples described herein. Moreover, the fossil microbial laminates of this study are relatively dense and strongly coat the silica cobbles, suggesting the mats stabilized the clasts under fully submerged and hot, high-energy conditions. Thus, this new sinter facies, typically found a few kilometers from main spring-vent areas, is a perhaps unexpected extreme environment in which life took hold in hydrothermal-fluvial settings of the past, and may serve as an additional target in the search for fossil biosignatures of early Earth and possibly Mars.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>31059288</pmid><doi>10.1089/ast.2018.1998</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1531-1074 |
ispartof | Astrobiology, 2019-12, Vol.19 (12), p.1433-1441 |
issn | 1531-1074 1557-8070 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232125152 |
source | Alma/SFX Local Collection |
subjects | Air-water interface Cenozoic Cobblestone Conglomerates Creeks & streams Earth Extreme environments Fossils Gels Glacial streams Hot springs Hydrothermal fields Interfaces Jurassic Laminates Mesozoic Microbial mats Microorganisms Miocene Morphology National parks Paleoenvironments Rivers Sedimentary facies Silica Silica gel Silicon dioxide Spring Streambeds |
title | Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20Silica%20Conglomerate%20with%20an%20Extremophile%20Microbial%20Matrix%20in%20a%20Hot-Water%20Stream%20Paleoenvironment&rft.jtitle=Astrobiology&rft.au=Guido,%20Diego%20M&rft.date=2019-12&rft.volume=19&rft.issue=12&rft.spage=1433&rft.epage=1441&rft.pages=1433-1441&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2018.1998&rft_dat=%3Cproquest_cross%3E2322156000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322156000&rft_id=info:pmid/31059288&rfr_iscdi=true |