High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis
Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learn...
Gespeichert in:
Veröffentlicht in: | Nature methods 2019-06, Vol.16 (6), p.519-525 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 6 |
container_start_page | 519 |
container_title | Nature methods |
container_volume | 16 |
creator | Tiwary, Shivani Levy, Roie Gutenbrunner, Petra Salinas Soto, Favio Palaniappan, Krishnan K. Deming, Laura Berndl, Marc Brant, Arthur Cimermancic, Peter Cox, Jürgen |
description | Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learning can predict peptide fragmentation patterns in mass spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the analysis of both data-dependent and data-independent acquisition datasets. In the former case, we observe a
q
-value-dependent increase in the total number of peptide identifications. In the latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly equivalent to the use of spectra from experimental libraries.
Machine learning and deep learning models are used to predict high-quality tandem mass spectra, providing benefits over traditional analysis methods for interpreting proteomics data. |
doi_str_mv | 10.1038/s41592-019-0427-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232116265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587289920</galeid><sourcerecordid>A587289920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-b268a0938d3c877752fd3aa6dcf5f102990b68e4652bc7412257acc2efeb8f383</originalsourceid><addsrcrecordid>eNp1kUlv1TAUhS0EogP8ADYoEhs2aT0Py6oCWqkVi8Lacjy8ukqcPDtZvH-PQ1oKCOSFrXO_c3StA8A7BM8QJPK8UMQUbiFSLaRYtPwFOEaMylYgyF4-vaFCR-CklAcICaGYvQZHBCFCBEfH4P4q7u7b_WL6OB-a27vz27umTN7OeRmaKXsX7RzH1IQxN87MpnV-8sn5NDcmuU2K6TfR7pdY4k_POqyU6Q8lljfgVTB98W8f71Pw_fOnb5dX7c3XL9eXFzetpUTNbYe5NFAR6YiVQgiGgyPGcGcDCwhipWDHpaec4c4KijBmwliLffCdDESSU_Bxy53yuF98mfUQi_V9b5Ifl6IxJhghjjmr6Ie_0IdxyXXfjeIMUQqfqZ3pvY4pjHM2dg3VF0wKLJXCK3X2D6oe54dox-RDrPofBrQZbB5LyT7oKcfB5INGUK_t6q1dXdvVa7uaV8_7x4WXbvDul-OpzgrgDSh1lHY-P__o_6k_AN2yrgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232651440</pqid></control><display><type>article</type><title>High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Tiwary, Shivani ; Levy, Roie ; Gutenbrunner, Petra ; Salinas Soto, Favio ; Palaniappan, Krishnan K. ; Deming, Laura ; Berndl, Marc ; Brant, Arthur ; Cimermancic, Peter ; Cox, Jürgen</creator><creatorcontrib>Tiwary, Shivani ; Levy, Roie ; Gutenbrunner, Petra ; Salinas Soto, Favio ; Palaniappan, Krishnan K. ; Deming, Laura ; Berndl, Marc ; Brant, Arthur ; Cimermancic, Peter ; Cox, Jürgen</creatorcontrib><description>Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learning can predict peptide fragmentation patterns in mass spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the analysis of both data-dependent and data-independent acquisition datasets. In the former case, we observe a
q
-value-dependent increase in the total number of peptide identifications. In the latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly equivalent to the use of spectra from experimental libraries.
Machine learning and deep learning models are used to predict high-quality tandem mass spectra, providing benefits over traditional analysis methods for interpreting proteomics data.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-019-0427-6</identifier><identifier>PMID: 31133761</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/114/2784 ; 631/1647/2067 ; 631/1647/296 ; 631/45/475 ; Algorithms ; Amino Acid Sequence ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomarkers - blood ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Composition ; Data Analysis ; Databases, Protein ; Fragmentation ; HeLa Cells ; Humans ; Identification and classification ; Ions ; Learning algorithms ; Life Sciences ; Machine learning ; Mass spectra ; Mass spectrometers ; Mass spectrometry ; Mass spectroscopy ; Methods ; Peptide Fragments - analysis ; Peptide Fragments - metabolism ; Peptide Library ; Peptides ; Predictions ; Protein structure prediction ; Proteome - analysis ; Proteome - metabolism ; Proteomics ; Scientific imaging ; Software ; Spectra ; Spectrometers ; Spectroscopy ; Tandem Mass Spectrometry - methods ; Technology application</subject><ispartof>Nature methods, 2019-06, Vol.16 (6), p.519-525</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-b268a0938d3c877752fd3aa6dcf5f102990b68e4652bc7412257acc2efeb8f383</citedby><cites>FETCH-LOGICAL-c439t-b268a0938d3c877752fd3aa6dcf5f102990b68e4652bc7412257acc2efeb8f383</cites><orcidid>0000-0002-2802-7649 ; 0000-0001-8597-205X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31133761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiwary, Shivani</creatorcontrib><creatorcontrib>Levy, Roie</creatorcontrib><creatorcontrib>Gutenbrunner, Petra</creatorcontrib><creatorcontrib>Salinas Soto, Favio</creatorcontrib><creatorcontrib>Palaniappan, Krishnan K.</creatorcontrib><creatorcontrib>Deming, Laura</creatorcontrib><creatorcontrib>Berndl, Marc</creatorcontrib><creatorcontrib>Brant, Arthur</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Cox, Jürgen</creatorcontrib><title>High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learning can predict peptide fragmentation patterns in mass spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the analysis of both data-dependent and data-independent acquisition datasets. In the former case, we observe a
q
-value-dependent increase in the total number of peptide identifications. In the latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly equivalent to the use of spectra from experimental libraries.
Machine learning and deep learning models are used to predict high-quality tandem mass spectra, providing benefits over traditional analysis methods for interpreting proteomics data.</description><subject>631/114/1305</subject><subject>631/114/2784</subject><subject>631/1647/2067</subject><subject>631/1647/296</subject><subject>631/45/475</subject><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomarkers - blood</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Composition</subject><subject>Data Analysis</subject><subject>Databases, Protein</subject><subject>Fragmentation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Ions</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mass spectra</subject><subject>Mass spectrometers</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Library</subject><subject>Peptides</subject><subject>Predictions</subject><subject>Protein structure prediction</subject><subject>Proteome - analysis</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectra</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Technology application</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUlv1TAUhS0EogP8ADYoEhs2aT0Py6oCWqkVi8Lacjy8ukqcPDtZvH-PQ1oKCOSFrXO_c3StA8A7BM8QJPK8UMQUbiFSLaRYtPwFOEaMylYgyF4-vaFCR-CklAcICaGYvQZHBCFCBEfH4P4q7u7b_WL6OB-a27vz27umTN7OeRmaKXsX7RzH1IQxN87MpnV-8sn5NDcmuU2K6TfR7pdY4k_POqyU6Q8lljfgVTB98W8f71Pw_fOnb5dX7c3XL9eXFzetpUTNbYe5NFAR6YiVQgiGgyPGcGcDCwhipWDHpaec4c4KijBmwliLffCdDESSU_Bxy53yuF98mfUQi_V9b5Ifl6IxJhghjjmr6Ie_0IdxyXXfjeIMUQqfqZ3pvY4pjHM2dg3VF0wKLJXCK3X2D6oe54dox-RDrPofBrQZbB5LyT7oKcfB5INGUK_t6q1dXdvVa7uaV8_7x4WXbvDul-OpzgrgDSh1lHY-P__o_6k_AN2yrgM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tiwary, Shivani</creator><creator>Levy, Roie</creator><creator>Gutenbrunner, Petra</creator><creator>Salinas Soto, Favio</creator><creator>Palaniappan, Krishnan K.</creator><creator>Deming, Laura</creator><creator>Berndl, Marc</creator><creator>Brant, Arthur</creator><creator>Cimermancic, Peter</creator><creator>Cox, Jürgen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0000-0001-8597-205X</orcidid></search><sort><creationdate>20190601</creationdate><title>High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis</title><author>Tiwary, Shivani ; Levy, Roie ; Gutenbrunner, Petra ; Salinas Soto, Favio ; Palaniappan, Krishnan K. ; Deming, Laura ; Berndl, Marc ; Brant, Arthur ; Cimermancic, Peter ; Cox, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-b268a0938d3c877752fd3aa6dcf5f102990b68e4652bc7412257acc2efeb8f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1305</topic><topic>631/114/2784</topic><topic>631/1647/2067</topic><topic>631/1647/296</topic><topic>631/45/475</topic><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomarkers - blood</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Composition</topic><topic>Data Analysis</topic><topic>Databases, Protein</topic><topic>Fragmentation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Ions</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mass spectra</topic><topic>Mass spectrometers</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Library</topic><topic>Peptides</topic><topic>Predictions</topic><topic>Protein structure prediction</topic><topic>Proteome - analysis</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectra</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwary, Shivani</creatorcontrib><creatorcontrib>Levy, Roie</creatorcontrib><creatorcontrib>Gutenbrunner, Petra</creatorcontrib><creatorcontrib>Salinas Soto, Favio</creatorcontrib><creatorcontrib>Palaniappan, Krishnan K.</creatorcontrib><creatorcontrib>Deming, Laura</creatorcontrib><creatorcontrib>Berndl, Marc</creatorcontrib><creatorcontrib>Brant, Arthur</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Cox, Jürgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwary, Shivani</au><au>Levy, Roie</au><au>Gutenbrunner, Petra</au><au>Salinas Soto, Favio</au><au>Palaniappan, Krishnan K.</au><au>Deming, Laura</au><au>Berndl, Marc</au><au>Brant, Arthur</au><au>Cimermancic, Peter</au><au>Cox, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>16</volume><issue>6</issue><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learning can predict peptide fragmentation patterns in mass spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the analysis of both data-dependent and data-independent acquisition datasets. In the former case, we observe a
q
-value-dependent increase in the total number of peptide identifications. In the latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly equivalent to the use of spectra from experimental libraries.
Machine learning and deep learning models are used to predict high-quality tandem mass spectra, providing benefits over traditional analysis methods for interpreting proteomics data.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31133761</pmid><doi>10.1038/s41592-019-0427-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0000-0001-8597-205X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2019-06, Vol.16 (6), p.519-525 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232116265 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/114/1305 631/114/2784 631/1647/2067 631/1647/296 631/45/475 Algorithms Amino Acid Sequence Bioinformatics Biological Microscopy Biological Techniques Biomarkers - blood Biomedical and Life Sciences Biomedical Engineering/Biotechnology Composition Data Analysis Databases, Protein Fragmentation HeLa Cells Humans Identification and classification Ions Learning algorithms Life Sciences Machine learning Mass spectra Mass spectrometers Mass spectrometry Mass spectroscopy Methods Peptide Fragments - analysis Peptide Fragments - metabolism Peptide Library Peptides Predictions Protein structure prediction Proteome - analysis Proteome - metabolism Proteomics Scientific imaging Software Spectra Spectrometers Spectroscopy Tandem Mass Spectrometry - methods Technology application |
title | High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-quality%20MS/MS%20spectrum%20prediction%20for%20data-dependent%20and%20data-independent%20acquisition%20data%20analysis&rft.jtitle=Nature%20methods&rft.au=Tiwary,%20Shivani&rft.date=2019-06-01&rft.volume=16&rft.issue=6&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-019-0427-6&rft_dat=%3Cgale_proqu%3EA587289920%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232651440&rft_id=info:pmid/31133761&rft_galeid=A587289920&rfr_iscdi=true |