Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance

•A navel orange mutant ‘Gannan No.1’ has higher biomembrane stability and fruit quality during storage.•Higher unsaturation degree of fatty acids contributes to the membrane stability of citrus fruit.•The ascorbic acid-glutathione-tocopherol triad contributes to the anti-peroxidation of membrane lip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2019-09, Vol.292, p.314-324
Hauptverfasser: He, Yizhong, Li, Zhuoran, Tan, Fengquan, Liu, Hai, Zhu, Man, Yang, Hongbin, Bi, Guanglin, Wan, Haoliang, Wang, Jinqiu, Xu, Rangwei, Wen, Weiwei, Zeng, Yunliu, Xu, Juan, Guo, Wenwu, Xue, Shaowu, Cheng, Yunjiang, Deng, Xiuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue
container_start_page 314
container_title Food chemistry
container_volume 292
creator He, Yizhong
Li, Zhuoran
Tan, Fengquan
Liu, Hai
Zhu, Man
Yang, Hongbin
Bi, Guanglin
Wan, Haoliang
Wang, Jinqiu
Xu, Rangwei
Wen, Weiwei
Zeng, Yunliu
Xu, Juan
Guo, Wenwu
Xue, Shaowu
Cheng, Yunjiang
Deng, Xiuxin
description •A navel orange mutant ‘Gannan No.1’ has higher biomembrane stability and fruit quality during storage.•Higher unsaturation degree of fatty acids contributes to the membrane stability of citrus fruit.•The ascorbic acid-glutathione-tocopherol triad contributes to the anti-peroxidation of membrane lipids in citrus fruit. Little is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant ‘Gannan No.1’ (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type ‘Newhall’. The membrane damage was significantly reduced in ‘Gannan No.1’ under 10% polyethylene-glycol (41.16% vs. 8.77%) and 30% polyethylene-glycol (52.59% vs.16.11%) treatments on day 45 after harvest. Consistently, membrane electrolyte leakage and malondialdehyde were significantly decreased in ‘Gannan No.1’, and superoxide dismutase and glutathione reductase were activated. A metabolic analysis was performed to evaluate membrane fatty acid unsaturation and peroxidation. Linolenic acid and hexadecylenic acid contributed to the higher degree of unsaturated fatty acids in ‘Gannan No.1’. Furthermore, ‘Gannan No.1’ accumulated stress-resistant metabolites such as proline, α-tocopherol and glutathione. Correlation analysis of membrane homeostasis indexes with quality parameters showed the importance of biomembrane stability in maintaining citrus fruit quality.
doi_str_mv 10.1016/j.foodchem.2019.04.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232114158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814619306582</els_id><sourcerecordid>2232114158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8027d98aedc91783e1be3ecc003f170cb65e124d778f414170ed414bc5e589fc3</originalsourceid><addsrcrecordid>eNqFUcluFDEQtRCITAK_EPnIpTvlXt03UEQAKRIXOFtuu8zUqN0ebHeUfAM_jUeTcOVgleS31PIYuxZQCxDDzaF2IVizR183IKYauhpgesV2Qo5tNcLYvGY7aEFWUnTDBbtM6QAAhSvfsotWQN8NEnbsz53O-YlrQ5Z7zHoOCxnulu2R69XyhY4FOGIMj2R1prDyffAYUtaJEvea1lwez3vkMxXEz1GvyAs-00LFOQdO_hjDA3JDOW6Ju7hRLowQ9S88ebsQvV4NvmNvnF4Svn-uV-zn3ecft1-r--9fvt1-uq9MB32uJDSjnaRGayYxyhbFjC0aA9A6MYKZhx5F09lxlK4TXflCW-pseuzl5Ex7xT6cfctYvzdMWXlKBpelTB62pJqmbUQR9rJQhzPVxJBSRKeOkbyOT0qAOgWhDuolCHUKQkGnShBFeP3cY5s92n-yl8sXwsczAcumD4RRJUNYrmAposnKBvpfj79MWaEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232114158</pqid></control><display><type>article</type><title>Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>He, Yizhong ; Li, Zhuoran ; Tan, Fengquan ; Liu, Hai ; Zhu, Man ; Yang, Hongbin ; Bi, Guanglin ; Wan, Haoliang ; Wang, Jinqiu ; Xu, Rangwei ; Wen, Weiwei ; Zeng, Yunliu ; Xu, Juan ; Guo, Wenwu ; Xue, Shaowu ; Cheng, Yunjiang ; Deng, Xiuxin</creator><creatorcontrib>He, Yizhong ; Li, Zhuoran ; Tan, Fengquan ; Liu, Hai ; Zhu, Man ; Yang, Hongbin ; Bi, Guanglin ; Wan, Haoliang ; Wang, Jinqiu ; Xu, Rangwei ; Wen, Weiwei ; Zeng, Yunliu ; Xu, Juan ; Guo, Wenwu ; Xue, Shaowu ; Cheng, Yunjiang ; Deng, Xiuxin</creatorcontrib><description>•A navel orange mutant ‘Gannan No.1’ has higher biomembrane stability and fruit quality during storage.•Higher unsaturation degree of fatty acids contributes to the membrane stability of citrus fruit.•The ascorbic acid-glutathione-tocopherol triad contributes to the anti-peroxidation of membrane lipids in citrus fruit. Little is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant ‘Gannan No.1’ (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type ‘Newhall’. The membrane damage was significantly reduced in ‘Gannan No.1’ under 10% polyethylene-glycol (41.16% vs. 8.77%) and 30% polyethylene-glycol (52.59% vs.16.11%) treatments on day 45 after harvest. Consistently, membrane electrolyte leakage and malondialdehyde were significantly decreased in ‘Gannan No.1’, and superoxide dismutase and glutathione reductase were activated. A metabolic analysis was performed to evaluate membrane fatty acid unsaturation and peroxidation. Linolenic acid and hexadecylenic acid contributed to the higher degree of unsaturated fatty acids in ‘Gannan No.1’. Furthermore, ‘Gannan No.1’ accumulated stress-resistant metabolites such as proline, α-tocopherol and glutathione. Correlation analysis of membrane homeostasis indexes with quality parameters showed the importance of biomembrane stability in maintaining citrus fruit quality.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2019.04.009</identifier><identifier>PMID: 31054680</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cell Wall - chemistry ; Cell Wall - metabolism ; Citrus ; Citrus sinensis - chemistry ; Citrus sinensis - genetics ; Citrus sinensis - metabolism ; Fatty acid ; Fatty Acids - metabolism ; Food Storage ; Fruit - chemistry ; Fruit - metabolism ; Fruit quality ; Glutathione Reductase - metabolism ; Lipid Peroxidation ; Malondialdehyde - analysis ; Malondialdehyde - metabolism ; Membrane Potentials ; Metabolite ; Mutation ; Phenotype ; Plant Proteins - metabolism ; Polyethylene Glycols - chemistry ; Postharvest ; Principal Component Analysis ; Superoxide Dismutase - metabolism</subject><ispartof>Food chemistry, 2019-09, Vol.292, p.314-324</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8027d98aedc91783e1be3ecc003f170cb65e124d778f414170ed414bc5e589fc3</citedby><cites>FETCH-LOGICAL-c405t-8027d98aedc91783e1be3ecc003f170cb65e124d778f414170ed414bc5e589fc3</cites><orcidid>0000-0002-3553-4163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814619306582$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31054680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yizhong</creatorcontrib><creatorcontrib>Li, Zhuoran</creatorcontrib><creatorcontrib>Tan, Fengquan</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhu, Man</creatorcontrib><creatorcontrib>Yang, Hongbin</creatorcontrib><creatorcontrib>Bi, Guanglin</creatorcontrib><creatorcontrib>Wan, Haoliang</creatorcontrib><creatorcontrib>Wang, Jinqiu</creatorcontrib><creatorcontrib>Xu, Rangwei</creatorcontrib><creatorcontrib>Wen, Weiwei</creatorcontrib><creatorcontrib>Zeng, Yunliu</creatorcontrib><creatorcontrib>Xu, Juan</creatorcontrib><creatorcontrib>Guo, Wenwu</creatorcontrib><creatorcontrib>Xue, Shaowu</creatorcontrib><creatorcontrib>Cheng, Yunjiang</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><title>Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>•A navel orange mutant ‘Gannan No.1’ has higher biomembrane stability and fruit quality during storage.•Higher unsaturation degree of fatty acids contributes to the membrane stability of citrus fruit.•The ascorbic acid-glutathione-tocopherol triad contributes to the anti-peroxidation of membrane lipids in citrus fruit. Little is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant ‘Gannan No.1’ (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type ‘Newhall’. The membrane damage was significantly reduced in ‘Gannan No.1’ under 10% polyethylene-glycol (41.16% vs. 8.77%) and 30% polyethylene-glycol (52.59% vs.16.11%) treatments on day 45 after harvest. Consistently, membrane electrolyte leakage and malondialdehyde were significantly decreased in ‘Gannan No.1’, and superoxide dismutase and glutathione reductase were activated. A metabolic analysis was performed to evaluate membrane fatty acid unsaturation and peroxidation. Linolenic acid and hexadecylenic acid contributed to the higher degree of unsaturated fatty acids in ‘Gannan No.1’. Furthermore, ‘Gannan No.1’ accumulated stress-resistant metabolites such as proline, α-tocopherol and glutathione. Correlation analysis of membrane homeostasis indexes with quality parameters showed the importance of biomembrane stability in maintaining citrus fruit quality.</description><subject>Cell Wall - chemistry</subject><subject>Cell Wall - metabolism</subject><subject>Citrus</subject><subject>Citrus sinensis - chemistry</subject><subject>Citrus sinensis - genetics</subject><subject>Citrus sinensis - metabolism</subject><subject>Fatty acid</subject><subject>Fatty Acids - metabolism</subject><subject>Food Storage</subject><subject>Fruit - chemistry</subject><subject>Fruit - metabolism</subject><subject>Fruit quality</subject><subject>Glutathione Reductase - metabolism</subject><subject>Lipid Peroxidation</subject><subject>Malondialdehyde - analysis</subject><subject>Malondialdehyde - metabolism</subject><subject>Membrane Potentials</subject><subject>Metabolite</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Plant Proteins - metabolism</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Postharvest</subject><subject>Principal Component Analysis</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcluFDEQtRCITAK_EPnIpTvlXt03UEQAKRIXOFtuu8zUqN0ebHeUfAM_jUeTcOVgleS31PIYuxZQCxDDzaF2IVizR183IKYauhpgesV2Qo5tNcLYvGY7aEFWUnTDBbtM6QAAhSvfsotWQN8NEnbsz53O-YlrQ5Z7zHoOCxnulu2R69XyhY4FOGIMj2R1prDyffAYUtaJEvea1lwez3vkMxXEz1GvyAs-00LFOQdO_hjDA3JDOW6Ju7hRLowQ9S88ebsQvV4NvmNvnF4Svn-uV-zn3ecft1-r--9fvt1-uq9MB32uJDSjnaRGayYxyhbFjC0aA9A6MYKZhx5F09lxlK4TXflCW-pseuzl5Ex7xT6cfctYvzdMWXlKBpelTB62pJqmbUQR9rJQhzPVxJBSRKeOkbyOT0qAOgWhDuolCHUKQkGnShBFeP3cY5s92n-yl8sXwsczAcumD4RRJUNYrmAposnKBvpfj79MWaEF</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>He, Yizhong</creator><creator>Li, Zhuoran</creator><creator>Tan, Fengquan</creator><creator>Liu, Hai</creator><creator>Zhu, Man</creator><creator>Yang, Hongbin</creator><creator>Bi, Guanglin</creator><creator>Wan, Haoliang</creator><creator>Wang, Jinqiu</creator><creator>Xu, Rangwei</creator><creator>Wen, Weiwei</creator><creator>Zeng, Yunliu</creator><creator>Xu, Juan</creator><creator>Guo, Wenwu</creator><creator>Xue, Shaowu</creator><creator>Cheng, Yunjiang</creator><creator>Deng, Xiuxin</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3553-4163</orcidid></search><sort><creationdate>20190915</creationdate><title>Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance</title><author>He, Yizhong ; Li, Zhuoran ; Tan, Fengquan ; Liu, Hai ; Zhu, Man ; Yang, Hongbin ; Bi, Guanglin ; Wan, Haoliang ; Wang, Jinqiu ; Xu, Rangwei ; Wen, Weiwei ; Zeng, Yunliu ; Xu, Juan ; Guo, Wenwu ; Xue, Shaowu ; Cheng, Yunjiang ; Deng, Xiuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8027d98aedc91783e1be3ecc003f170cb65e124d778f414170ed414bc5e589fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell Wall - chemistry</topic><topic>Cell Wall - metabolism</topic><topic>Citrus</topic><topic>Citrus sinensis - chemistry</topic><topic>Citrus sinensis - genetics</topic><topic>Citrus sinensis - metabolism</topic><topic>Fatty acid</topic><topic>Fatty Acids - metabolism</topic><topic>Food Storage</topic><topic>Fruit - chemistry</topic><topic>Fruit - metabolism</topic><topic>Fruit quality</topic><topic>Glutathione Reductase - metabolism</topic><topic>Lipid Peroxidation</topic><topic>Malondialdehyde - analysis</topic><topic>Malondialdehyde - metabolism</topic><topic>Membrane Potentials</topic><topic>Metabolite</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Plant Proteins - metabolism</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Postharvest</topic><topic>Principal Component Analysis</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yizhong</creatorcontrib><creatorcontrib>Li, Zhuoran</creatorcontrib><creatorcontrib>Tan, Fengquan</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhu, Man</creatorcontrib><creatorcontrib>Yang, Hongbin</creatorcontrib><creatorcontrib>Bi, Guanglin</creatorcontrib><creatorcontrib>Wan, Haoliang</creatorcontrib><creatorcontrib>Wang, Jinqiu</creatorcontrib><creatorcontrib>Xu, Rangwei</creatorcontrib><creatorcontrib>Wen, Weiwei</creatorcontrib><creatorcontrib>Zeng, Yunliu</creatorcontrib><creatorcontrib>Xu, Juan</creatorcontrib><creatorcontrib>Guo, Wenwu</creatorcontrib><creatorcontrib>Xue, Shaowu</creatorcontrib><creatorcontrib>Cheng, Yunjiang</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yizhong</au><au>Li, Zhuoran</au><au>Tan, Fengquan</au><au>Liu, Hai</au><au>Zhu, Man</au><au>Yang, Hongbin</au><au>Bi, Guanglin</au><au>Wan, Haoliang</au><au>Wang, Jinqiu</au><au>Xu, Rangwei</au><au>Wen, Weiwei</au><au>Zeng, Yunliu</au><au>Xu, Juan</au><au>Guo, Wenwu</au><au>Xue, Shaowu</au><au>Cheng, Yunjiang</au><au>Deng, Xiuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2019-09-15</date><risdate>2019</risdate><volume>292</volume><spage>314</spage><epage>324</epage><pages>314-324</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•A navel orange mutant ‘Gannan No.1’ has higher biomembrane stability and fruit quality during storage.•Higher unsaturation degree of fatty acids contributes to the membrane stability of citrus fruit.•The ascorbic acid-glutathione-tocopherol triad contributes to the anti-peroxidation of membrane lipids in citrus fruit. Little is known about the variations of fresh fruit biomembrane and its physiological and biochemical characteristics during storage. A navel orange mutant ‘Gannan No.1’ (Citrus sinensis Osbeck) showed higher membrane stability and titratable acid while lower calyx senescence compared with wild-type ‘Newhall’. The membrane damage was significantly reduced in ‘Gannan No.1’ under 10% polyethylene-glycol (41.16% vs. 8.77%) and 30% polyethylene-glycol (52.59% vs.16.11%) treatments on day 45 after harvest. Consistently, membrane electrolyte leakage and malondialdehyde were significantly decreased in ‘Gannan No.1’, and superoxide dismutase and glutathione reductase were activated. A metabolic analysis was performed to evaluate membrane fatty acid unsaturation and peroxidation. Linolenic acid and hexadecylenic acid contributed to the higher degree of unsaturated fatty acids in ‘Gannan No.1’. Furthermore, ‘Gannan No.1’ accumulated stress-resistant metabolites such as proline, α-tocopherol and glutathione. Correlation analysis of membrane homeostasis indexes with quality parameters showed the importance of biomembrane stability in maintaining citrus fruit quality.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31054680</pmid><doi>10.1016/j.foodchem.2019.04.009</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3553-4163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2019-09, Vol.292, p.314-324
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_2232114158
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cell Wall - chemistry
Cell Wall - metabolism
Citrus
Citrus sinensis - chemistry
Citrus sinensis - genetics
Citrus sinensis - metabolism
Fatty acid
Fatty Acids - metabolism
Food Storage
Fruit - chemistry
Fruit - metabolism
Fruit quality
Glutathione Reductase - metabolism
Lipid Peroxidation
Malondialdehyde - analysis
Malondialdehyde - metabolism
Membrane Potentials
Metabolite
Mutation
Phenotype
Plant Proteins - metabolism
Polyethylene Glycols - chemistry
Postharvest
Principal Component Analysis
Superoxide Dismutase - metabolism
title Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatty%20acid%20metabolic%20flux%20and%20lipid%20peroxidation%20homeostasis%20maintain%20the%20biomembrane%20stability%20to%20improve%20citrus%20fruit%20storage%20performance&rft.jtitle=Food%20chemistry&rft.au=He,%20Yizhong&rft.date=2019-09-15&rft.volume=292&rft.spage=314&rft.epage=324&rft.pages=314-324&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2019.04.009&rft_dat=%3Cproquest_cross%3E2232114158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232114158&rft_id=info:pmid/31054680&rft_els_id=S0308814619306582&rfr_iscdi=true