Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation

Purpose Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2019-07, Vol.46 (8), p.1733-1744
Hauptverfasser: Chung, Yi-Hsiu, Yu, Ching-Fang, Chiu, Shao-Chieh, Chiu, Han, Hsu, Shin-Ting, Wu, Ching-Rong, Yang, Chung-Lin, Hong, Ji-Hong, Yen, Tzu-Chen, Chen, Fang-Hsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1744
container_issue 8
container_start_page 1733
container_title European journal of nuclear medicine and molecular imaging
container_volume 46
creator Chung, Yi-Hsiu
Yu, Ching-Fang
Chiu, Shao-Chieh
Chiu, Han
Hsu, Shin-Ting
Wu, Ching-Rong
Yang, Chung-Lin
Hong, Ji-Hong
Yen, Tzu-Chen
Chen, Fang-Hsin
description Purpose Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). Methods Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18 F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. Results Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18 F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18 F-FDG. Conclusion ADC values and 18 F-FDG uptake measured using DW MRI and 18 F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.
doi_str_mv 10.1007/s00259-019-04318-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232101101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229805955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-d216d22a4f47b59c52754bc88c03fd4223c4246b9a6dcba10cdd412fc0a7c0a23</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhiNEpVLaF-jJEpde0tpOsnG4FZYFpKVFiJ6tWXvCGjl2ajugfZs-ar0sAokDkkeekb9__Et_UXxl9DujtP0RKeVNV1KWq66YKKu94oDN8thS0e2_9C39WHyK8Z5SJrjoDop_c9P3UzTelY9o7tYJNbm6uSTgNGFiUS7m5-T67JYoHwJaSBkkjyatiRmGyZm0IcYRhGA3JIA2Pq0xwJgHjKN3EbfPJ7-WZI0jJK_Q2slCIAqCMs4PQAY_ZWrwGu0xSWZAaxySB7BGP_32ufjQg4345fk-LP4szm5PL8rl7_PL05_LUnHBU6k5m2nOoe7rdtV0quFtU6-UEIpWva45r1TN69mqg5lWK2BUaV0z3isKbS5eHRbfdnvH4P9OGJMcTNz6BYfZoswbOKMsn4wevUHv_RRcdpcp3gnadE2TKb6jVPAxBuzlGMwAYSMZldvQ5C40mUOTT6HJKouqnShm2N1heF39juo_Xsab1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229805955</pqid></control><display><type>article</type><title>Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation</title><source>SpringerLink Journals</source><creator>Chung, Yi-Hsiu ; Yu, Ching-Fang ; Chiu, Shao-Chieh ; Chiu, Han ; Hsu, Shin-Ting ; Wu, Ching-Rong ; Yang, Chung-Lin ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Chen, Fang-Hsin</creator><creatorcontrib>Chung, Yi-Hsiu ; Yu, Ching-Fang ; Chiu, Shao-Chieh ; Chiu, Han ; Hsu, Shin-Ting ; Wu, Ching-Rong ; Yang, Chung-Lin ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Chen, Fang-Hsin</creatorcontrib><description>Purpose Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). Methods Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18 F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. Results Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18 F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18 F-FDG. Conclusion ADC values and 18 F-FDG uptake measured using DW MRI and 18 F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-019-04318-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomarkers ; Cancer ; Cardiology ; Diffusion ; Diffusion coefficient ; Fluorine isotopes ; Hepatocellular carcinoma ; Imaging ; Immunity ; Irradiation ; Liver ; Liver cancer ; Macrophages ; Magnetic resonance imaging ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; NMR ; Nuclear magnetic resonance ; Nuclear Medicine ; Oncology ; Original Article ; Orthopedics ; Positron emission ; Positron emission tomography ; Radiation ; Radiation therapy ; Radiology ; Staining ; Tomography ; Tumors</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2019-07, Vol.46 (8), p.1733-1744</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>European Journal of Nuclear Medicine and Molecular Imaging is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-d216d22a4f47b59c52754bc88c03fd4223c4246b9a6dcba10cdd412fc0a7c0a23</citedby><cites>FETCH-LOGICAL-c282t-d216d22a4f47b59c52754bc88c03fd4223c4246b9a6dcba10cdd412fc0a7c0a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-019-04318-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-019-04318-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chung, Yi-Hsiu</creatorcontrib><creatorcontrib>Yu, Ching-Fang</creatorcontrib><creatorcontrib>Chiu, Shao-Chieh</creatorcontrib><creatorcontrib>Chiu, Han</creatorcontrib><creatorcontrib>Hsu, Shin-Ting</creatorcontrib><creatorcontrib>Wu, Ching-Rong</creatorcontrib><creatorcontrib>Yang, Chung-Lin</creatorcontrib><creatorcontrib>Hong, Ji-Hong</creatorcontrib><creatorcontrib>Yen, Tzu-Chen</creatorcontrib><creatorcontrib>Chen, Fang-Hsin</creatorcontrib><title>Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). Methods Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18 F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. Results Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18 F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18 F-FDG. Conclusion ADC values and 18 F-FDG uptake measured using DW MRI and 18 F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.</description><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cardiology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fluorine isotopes</subject><subject>Hepatocellular carcinoma</subject><subject>Imaging</subject><subject>Immunity</subject><subject>Irradiation</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Macrophages</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Staining</subject><subject>Tomography</subject><subject>Tumors</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kcFO3DAQhiNEpVLaF-jJEpde0tpOsnG4FZYFpKVFiJ6tWXvCGjl2ajugfZs-ar0sAokDkkeekb9__Et_UXxl9DujtP0RKeVNV1KWq66YKKu94oDN8thS0e2_9C39WHyK8Z5SJrjoDop_c9P3UzTelY9o7tYJNbm6uSTgNGFiUS7m5-T67JYoHwJaSBkkjyatiRmGyZm0IcYRhGA3JIA2Pq0xwJgHjKN3EbfPJ7-WZI0jJK_Q2slCIAqCMs4PQAY_ZWrwGu0xSWZAaxySB7BGP_32ufjQg4345fk-LP4szm5PL8rl7_PL05_LUnHBU6k5m2nOoe7rdtV0quFtU6-UEIpWva45r1TN69mqg5lWK2BUaV0z3isKbS5eHRbfdnvH4P9OGJMcTNz6BYfZoswbOKMsn4wevUHv_RRcdpcp3gnadE2TKb6jVPAxBuzlGMwAYSMZldvQ5C40mUOTT6HJKouqnShm2N1heF39juo_Xsab1w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Chung, Yi-Hsiu</creator><creator>Yu, Ching-Fang</creator><creator>Chiu, Shao-Chieh</creator><creator>Chiu, Han</creator><creator>Hsu, Shin-Ting</creator><creator>Wu, Ching-Rong</creator><creator>Yang, Chung-Lin</creator><creator>Hong, Ji-Hong</creator><creator>Yen, Tzu-Chen</creator><creator>Chen, Fang-Hsin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation</title><author>Chung, Yi-Hsiu ; Yu, Ching-Fang ; Chiu, Shao-Chieh ; Chiu, Han ; Hsu, Shin-Ting ; Wu, Ching-Rong ; Yang, Chung-Lin ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Chen, Fang-Hsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-d216d22a4f47b59c52754bc88c03fd4223c4246b9a6dcba10cdd412fc0a7c0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cardiology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fluorine isotopes</topic><topic>Hepatocellular carcinoma</topic><topic>Imaging</topic><topic>Immunity</topic><topic>Irradiation</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Macrophages</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Staining</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Yi-Hsiu</creatorcontrib><creatorcontrib>Yu, Ching-Fang</creatorcontrib><creatorcontrib>Chiu, Shao-Chieh</creatorcontrib><creatorcontrib>Chiu, Han</creatorcontrib><creatorcontrib>Hsu, Shin-Ting</creatorcontrib><creatorcontrib>Wu, Ching-Rong</creatorcontrib><creatorcontrib>Yang, Chung-Lin</creatorcontrib><creatorcontrib>Hong, Ji-Hong</creatorcontrib><creatorcontrib>Yen, Tzu-Chen</creatorcontrib><creatorcontrib>Chen, Fang-Hsin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Yi-Hsiu</au><au>Yu, Ching-Fang</au><au>Chiu, Shao-Chieh</au><au>Chiu, Han</au><au>Hsu, Shin-Ting</au><au>Wu, Ching-Rong</au><au>Yang, Chung-Lin</au><au>Hong, Ji-Hong</au><au>Yen, Tzu-Chen</au><au>Chen, Fang-Hsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>46</volume><issue>8</issue><spage>1733</spage><epage>1744</epage><pages>1733-1744</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). Methods Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18 F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. Results Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18 F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18 F-FDG. Conclusion ADC values and 18 F-FDG uptake measured using DW MRI and 18 F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00259-019-04318-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1619-7070
ispartof European journal of nuclear medicine and molecular imaging, 2019-07, Vol.46 (8), p.1733-1744
issn 1619-7070
1619-7089
language eng
recordid cdi_proquest_miscellaneous_2232101101
source SpringerLink Journals
subjects Biomarkers
Cancer
Cardiology
Diffusion
Diffusion coefficient
Fluorine isotopes
Hepatocellular carcinoma
Imaging
Immunity
Irradiation
Liver
Liver cancer
Macrophages
Magnetic resonance imaging
Medical imaging
Medicine
Medicine & Public Health
NMR
Nuclear magnetic resonance
Nuclear Medicine
Oncology
Original Article
Orthopedics
Positron emission
Positron emission tomography
Radiation
Radiation therapy
Radiology
Staining
Tomography
Tumors
title Diffusion-weighted MRI and 18F-FDG PET correlation with immunity in early radiotherapy response in BNL hepatocellular carcinoma mouse model: timeline validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-weighted%20MRI%20and%2018F-FDG%20PET%20correlation%20with%20immunity%20in%20early%20radiotherapy%20response%20in%20BNL%20hepatocellular%20carcinoma%20mouse%20model:%20timeline%20validation&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Chung,%20Yi-Hsiu&rft.date=2019-07-01&rft.volume=46&rft.issue=8&rft.spage=1733&rft.epage=1744&rft.pages=1733-1744&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-019-04318-3&rft_dat=%3Cproquest_cross%3E2229805955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229805955&rft_id=info:pmid/&rfr_iscdi=true