Rotational Diffusion of Proteins in Nanochannels

The rotational diffusion coefficient is an essential parameter in determining the mechanistic features of biomolecules in both crowded and confined environments. Understanding the influence of nanoconfinement on rotational diffusion is vital in conceptualizing dynamics of biomolecules (such as prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2019-06, Vol.123 (23), p.4825-4832
Hauptverfasser: Haridasan, Navaneeth, Kannam, Sridhar Kumar, Mogurampelly, Santosh, Sathian, Sarith P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4832
container_issue 23
container_start_page 4825
container_title The journal of physical chemistry. B
container_volume 123
creator Haridasan, Navaneeth
Kannam, Sridhar Kumar
Mogurampelly, Santosh
Sathian, Sarith P
description The rotational diffusion coefficient is an essential parameter in determining the mechanistic features of biomolecules in both crowded and confined environments. Understanding the influence of nanoconfinement on rotational diffusion is vital in conceptualizing dynamics of biomolecules (such as proteins) in nanopores. The control of the translational movement of biomolecules is practiced widely in nanopore experiments. However, the restrictions on the translational movement may affect other dynamic properties such as rotational diffusion. In this paper, we use a coarse-grained molecular dynamics approach to study the rotational dynamics of a sample protein under the influence of cylindrical nanopore confinement. Our simulation reveals a 2-fold reduction in magnitude from the bulk rotational diffusion coefficient value as the confinement radius reaches double the size of protein’s hydrodynamic radius. However, the changes in the rotational diffusion coefficient are relatively small compared to the changes in the translational diffusion coefficient. Interestingly, the rotational anisotropy also varies considerably when pore radii approach protein dimensions. Our simulations point out that the confinement effects cause the breakdown of small angular displacement theory when the pore radius is close to the protein hydrodynamic radius.
doi_str_mv 10.1021/acs.jpcb.9b00895
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232097115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232097115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-f3f3a9baf6cbd85b2ec2273c0df8781a46ce3fe90c00e2d87f4fc13fa53975403</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwM6GMDKQ827GdjKjlS6oAIZgtx7FFqtQudjLw73FpYGN4enc49w4HoXMMcwwEXysd5-utrudVDVBW7ABNMSOQpxOHY-YY-ASdxLgGIIyU_BhNKMZYcCimCF59r_rWO9Vly9baIaaceZu9BN-b1sWsddmTcl5_KOdMF0_RkVVdNGfjn6H3u9u3xUO-er5_XNysckUp73NLLVVVrSzXdVOymhhNiKAaGluKEquCa0OtqUADGNKUwhZWY2oVo5VgBdAZutzvboP_HEzs5aaN2nSdcsYPURJCCVQCY5ZQ2KM6-BiDsXIb2o0KXxKD3HmSyZPceZKjp1S5GNeHemOav8KvmARc7YGfqh9CEhT_3_sGfv1zmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232097115</pqid></control><display><type>article</type><title>Rotational Diffusion of Proteins in Nanochannels</title><source>ACS Publications</source><creator>Haridasan, Navaneeth ; Kannam, Sridhar Kumar ; Mogurampelly, Santosh ; Sathian, Sarith P</creator><creatorcontrib>Haridasan, Navaneeth ; Kannam, Sridhar Kumar ; Mogurampelly, Santosh ; Sathian, Sarith P</creatorcontrib><description>The rotational diffusion coefficient is an essential parameter in determining the mechanistic features of biomolecules in both crowded and confined environments. Understanding the influence of nanoconfinement on rotational diffusion is vital in conceptualizing dynamics of biomolecules (such as proteins) in nanopores. The control of the translational movement of biomolecules is practiced widely in nanopore experiments. However, the restrictions on the translational movement may affect other dynamic properties such as rotational diffusion. In this paper, we use a coarse-grained molecular dynamics approach to study the rotational dynamics of a sample protein under the influence of cylindrical nanopore confinement. Our simulation reveals a 2-fold reduction in magnitude from the bulk rotational diffusion coefficient value as the confinement radius reaches double the size of protein’s hydrodynamic radius. However, the changes in the rotational diffusion coefficient are relatively small compared to the changes in the translational diffusion coefficient. Interestingly, the rotational anisotropy also varies considerably when pore radii approach protein dimensions. Our simulations point out that the confinement effects cause the breakdown of small angular displacement theory when the pore radius is close to the protein hydrodynamic radius.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b00895</identifier><identifier>PMID: 31117604</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2019-06, Vol.123 (23), p.4825-4832</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-f3f3a9baf6cbd85b2ec2273c0df8781a46ce3fe90c00e2d87f4fc13fa53975403</citedby><cites>FETCH-LOGICAL-a336t-f3f3a9baf6cbd85b2ec2273c0df8781a46ce3fe90c00e2d87f4fc13fa53975403</cites><orcidid>0000-0003-2756-7210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.9b00895$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.9b00895$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31117604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haridasan, Navaneeth</creatorcontrib><creatorcontrib>Kannam, Sridhar Kumar</creatorcontrib><creatorcontrib>Mogurampelly, Santosh</creatorcontrib><creatorcontrib>Sathian, Sarith P</creatorcontrib><title>Rotational Diffusion of Proteins in Nanochannels</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The rotational diffusion coefficient is an essential parameter in determining the mechanistic features of biomolecules in both crowded and confined environments. Understanding the influence of nanoconfinement on rotational diffusion is vital in conceptualizing dynamics of biomolecules (such as proteins) in nanopores. The control of the translational movement of biomolecules is practiced widely in nanopore experiments. However, the restrictions on the translational movement may affect other dynamic properties such as rotational diffusion. In this paper, we use a coarse-grained molecular dynamics approach to study the rotational dynamics of a sample protein under the influence of cylindrical nanopore confinement. Our simulation reveals a 2-fold reduction in magnitude from the bulk rotational diffusion coefficient value as the confinement radius reaches double the size of protein’s hydrodynamic radius. However, the changes in the rotational diffusion coefficient are relatively small compared to the changes in the translational diffusion coefficient. Interestingly, the rotational anisotropy also varies considerably when pore radii approach protein dimensions. Our simulations point out that the confinement effects cause the breakdown of small angular displacement theory when the pore radius is close to the protein hydrodynamic radius.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwM6GMDKQ827GdjKjlS6oAIZgtx7FFqtQudjLw73FpYGN4enc49w4HoXMMcwwEXysd5-utrudVDVBW7ABNMSOQpxOHY-YY-ASdxLgGIIyU_BhNKMZYcCimCF59r_rWO9Vly9baIaaceZu9BN-b1sWsddmTcl5_KOdMF0_RkVVdNGfjn6H3u9u3xUO-er5_XNysckUp73NLLVVVrSzXdVOymhhNiKAaGluKEquCa0OtqUADGNKUwhZWY2oVo5VgBdAZutzvboP_HEzs5aaN2nSdcsYPURJCCVQCY5ZQ2KM6-BiDsXIb2o0KXxKD3HmSyZPceZKjp1S5GNeHemOav8KvmARc7YGfqh9CEhT_3_sGfv1zmw</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Haridasan, Navaneeth</creator><creator>Kannam, Sridhar Kumar</creator><creator>Mogurampelly, Santosh</creator><creator>Sathian, Sarith P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2756-7210</orcidid></search><sort><creationdate>20190613</creationdate><title>Rotational Diffusion of Proteins in Nanochannels</title><author>Haridasan, Navaneeth ; Kannam, Sridhar Kumar ; Mogurampelly, Santosh ; Sathian, Sarith P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-f3f3a9baf6cbd85b2ec2273c0df8781a46ce3fe90c00e2d87f4fc13fa53975403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haridasan, Navaneeth</creatorcontrib><creatorcontrib>Kannam, Sridhar Kumar</creatorcontrib><creatorcontrib>Mogurampelly, Santosh</creatorcontrib><creatorcontrib>Sathian, Sarith P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haridasan, Navaneeth</au><au>Kannam, Sridhar Kumar</au><au>Mogurampelly, Santosh</au><au>Sathian, Sarith P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational Diffusion of Proteins in Nanochannels</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-06-13</date><risdate>2019</risdate><volume>123</volume><issue>23</issue><spage>4825</spage><epage>4832</epage><pages>4825-4832</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The rotational diffusion coefficient is an essential parameter in determining the mechanistic features of biomolecules in both crowded and confined environments. Understanding the influence of nanoconfinement on rotational diffusion is vital in conceptualizing dynamics of biomolecules (such as proteins) in nanopores. The control of the translational movement of biomolecules is practiced widely in nanopore experiments. However, the restrictions on the translational movement may affect other dynamic properties such as rotational diffusion. In this paper, we use a coarse-grained molecular dynamics approach to study the rotational dynamics of a sample protein under the influence of cylindrical nanopore confinement. Our simulation reveals a 2-fold reduction in magnitude from the bulk rotational diffusion coefficient value as the confinement radius reaches double the size of protein’s hydrodynamic radius. However, the changes in the rotational diffusion coefficient are relatively small compared to the changes in the translational diffusion coefficient. Interestingly, the rotational anisotropy also varies considerably when pore radii approach protein dimensions. Our simulations point out that the confinement effects cause the breakdown of small angular displacement theory when the pore radius is close to the protein hydrodynamic radius.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31117604</pmid><doi>10.1021/acs.jpcb.9b00895</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2756-7210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2019-06, Vol.123 (23), p.4825-4832
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2232097115
source ACS Publications
title Rotational Diffusion of Proteins in Nanochannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20Diffusion%20of%20Proteins%20in%20Nanochannels&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Haridasan,%20Navaneeth&rft.date=2019-06-13&rft.volume=123&rft.issue=23&rft.spage=4825&rft.epage=4832&rft.pages=4825-4832&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b00895&rft_dat=%3Cproquest_cross%3E2232097115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232097115&rft_id=info:pmid/31117604&rfr_iscdi=true