Immunotherapy of Endothelin-1 Receptor Type A for Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is a chronic fatal disease. The treatment of PAH is less than ideal and the control is far from satisfactory worldwide. Vaccination provides a promising approach for treatment of PAH. This study sought to find a vaccine against endothelin-1 (ET-1) receptor type...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Cardiology 2019-05, Vol.73 (20), p.2567-2580 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulmonary arterial hypertension (PAH) is a chronic fatal disease. The treatment of PAH is less than ideal and the control is far from satisfactory worldwide. Vaccination provides a promising approach for treatment of PAH.
This study sought to find a vaccine against endothelin-1 (ET-1) receptor type A (ETAR) for treating PAH.
The ETRQβ-002 vaccine was screened and the specific antibodies against epitope ETR-002 belonging to the second extracellular loop of ETAR (including the polyclonal and monoclonal antibody) were produced. The effect of the antibodies on Ca2+-dependent signal transduction events was investigated. In vivo, ETRQβ-002 vaccine was used to vaccinate monocrotaline (MCT)- and Sugen/hypoxia–induced pulmonary hypertension animals. The monoclonal antibody (mAb) against ETR-002 was also injected into the PAH animals. The effect of ETRQβ-002 vaccine on pulmonary hypertension and remodeling of pulmonary arterioles and right ventricle (RV) was carefully evaluated. Further, the possible immune-mediated damage was detected in normal vaccinated animals.
ETR-002 peptide has perfect immunogenicity and ETRQβ-002 vaccine could induce strong antibody production. In vitro, the anti–ETR-002 antibody bound to ETAR and inhibited Ca2+-dependent signal transduction events, including extracellular signal-regulated kinase phosphorylation and elevation of intracellular Ca2+ concentration induced by ET-1. In vivo, both ETRQβ-002 vaccine and the mAb significantly decreased the RV systolic pressure up to 20 mm Hg and 10 mm Hg in MCT-exposed rats and Sugen/hypoxia–exposed mice, respectively. Also, ETRQβ-002 vaccine/mAb obviously ameliorated pathological remodeling of pulmonary arterioles and hypertrophy of the RV in PAH animals. Additionally, no significant immune-mediated damage was detected in vaccinated animals.
ETRQβ-002 vaccine/mAb attenuated remodeling of pulmonary arterioles and RV in MCT- and Sugen/hypoxia–induced PAH animals and decreased RV systolic pressure effectively through diminishing the pressure response and inhibiting signal transduction initiated by ET-1. ETRQβ-002 vaccine/mAb may provide a novel and promising method for PAH treatment.
[Display omitted] |
---|---|
ISSN: | 0735-1097 1558-3597 |
DOI: | 10.1016/j.jacc.2019.02.067 |