Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries

TiO2−x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-07, Vol.58 (27), p.9078-9082
Hauptverfasser: Salhabi, Esmail Husein M., Zhao, Jilu, Wang, Jiangyan, Yang, Mei, Wang, Bao, Wang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9082
container_issue 27
container_start_page 9078
container_title Angewandte Chemie International Edition
container_volume 58
creator Salhabi, Esmail Husein M.
Zhao, Jilu
Wang, Jiangyan
Yang, Mei
Wang, Bao
Wang, Dan
description TiO2−x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2−x HoMSs delivered a specific capacity of 903 mAh g−1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength. Three shells: A TiO2−x hollow multi‐shelled structure (HoMS) used as sulfur carrier can significantly improve the coulombic efficiency and cycling stability of Li–S batteries. The three separated layers not only trap polysulfide through physical confinement, but the interlayer voids can efficiently buffer the volume expansion.
doi_str_mv 10.1002/anie.201903295
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232094024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232094024</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3035-947c922af0419ab4ca38123d2b9c3f3e70c52b077b84b56ba60fa447d05c628f3</originalsourceid><addsrcrecordid>eNpdkT9PwzAQxSMEEqWwMltiYUnxv8TJWKpCKwU6pMyRk9qtKzcpjq3SrSMjgm_YT4Krog5Md6f73dM7vSC4RbCHIMQPvFaihyFKIcFpdBZ0UIRRSBgj576nhIQsidBlcNW2S88nCYw7wWbUaN1swIvTVu13X_lCaC1mILfGVdYZrsFUTfD-8_sDbJRdHMG1FiBfc6v8etDUUtViJWoLZGNA1tRzL5QpKUDmL5Rb7Xc_udPSGfDIrRVGifY6uJBct-Lmr3aDt6fhdDAKs8nzeNDPwjmBJApTyqoUYy4hRSkvacVJgjCZ4TKtiCSCwSrCJWSsTGgZxSWPoeSUshmMqhgnknSD-6Pu2jTvTrS2WKm28j_yWjSuLTAmGKYUYurRu3_osnGm9u48FZGYJRAhT6VHaqO02BZro1bcbAsEi0MIxSGE4hRC0X8dD08T-QWxzYGu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253678011</pqid></control><display><type>article</type><title>Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salhabi, Esmail Husein M. ; Zhao, Jilu ; Wang, Jiangyan ; Yang, Mei ; Wang, Bao ; Wang, Dan</creator><creatorcontrib>Salhabi, Esmail Husein M. ; Zhao, Jilu ; Wang, Jiangyan ; Yang, Mei ; Wang, Bao ; Wang, Dan</creatorcontrib><description>TiO2−x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2−x HoMSs delivered a specific capacity of 903 mAh g−1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength. Three shells: A TiO2−x hollow multi‐shelled structure (HoMS) used as sulfur carrier can significantly improve the coulombic efficiency and cycling stability of Li–S batteries. The three separated layers not only trap polysulfide through physical confinement, but the interlayer voids can efficiently buffer the volume expansion.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903295</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Charge transfer ; Confinement ; Electrochemical analysis ; Electrochemistry ; hollow multi-shelled structures (HoMSs) ; Lithium ; Lithium sulfur batteries ; Li–S batteries ; Mechanical properties ; Organic chemistry ; polysulfides ; Specific capacity ; Sulfur ; titanium ; Titanium dioxide</subject><ispartof>Angewandte Chemie International Edition, 2019-07, Vol.58 (27), p.9078-9082</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2670-8894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201903295$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201903295$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Salhabi, Esmail Husein M.</creatorcontrib><creatorcontrib>Zhao, Jilu</creatorcontrib><creatorcontrib>Wang, Jiangyan</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><title>Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries</title><title>Angewandte Chemie International Edition</title><description>TiO2−x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2−x HoMSs delivered a specific capacity of 903 mAh g−1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength. Three shells: A TiO2−x hollow multi‐shelled structure (HoMS) used as sulfur carrier can significantly improve the coulombic efficiency and cycling stability of Li–S batteries. The three separated layers not only trap polysulfide through physical confinement, but the interlayer voids can efficiently buffer the volume expansion.</description><subject>Batteries</subject><subject>Charge transfer</subject><subject>Confinement</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>hollow multi-shelled structures (HoMSs)</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Mechanical properties</subject><subject>Organic chemistry</subject><subject>polysulfides</subject><subject>Specific capacity</subject><subject>Sulfur</subject><subject>titanium</subject><subject>Titanium dioxide</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkT9PwzAQxSMEEqWwMltiYUnxv8TJWKpCKwU6pMyRk9qtKzcpjq3SrSMjgm_YT4Krog5Md6f73dM7vSC4RbCHIMQPvFaihyFKIcFpdBZ0UIRRSBgj576nhIQsidBlcNW2S88nCYw7wWbUaN1swIvTVu13X_lCaC1mILfGVdYZrsFUTfD-8_sDbJRdHMG1FiBfc6v8etDUUtViJWoLZGNA1tRzL5QpKUDmL5Rb7Xc_udPSGfDIrRVGifY6uJBct-Lmr3aDt6fhdDAKs8nzeNDPwjmBJApTyqoUYy4hRSkvacVJgjCZ4TKtiCSCwSrCJWSsTGgZxSWPoeSUshmMqhgnknSD-6Pu2jTvTrS2WKm28j_yWjSuLTAmGKYUYurRu3_osnGm9u48FZGYJRAhT6VHaqO02BZro1bcbAsEi0MIxSGE4hRC0X8dD08T-QWxzYGu</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Salhabi, Esmail Husein M.</creator><creator>Zhao, Jilu</creator><creator>Wang, Jiangyan</creator><creator>Yang, Mei</creator><creator>Wang, Bao</creator><creator>Wang, Dan</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2670-8894</orcidid></search><sort><creationdate>20190701</creationdate><title>Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries</title><author>Salhabi, Esmail Husein M. ; Zhao, Jilu ; Wang, Jiangyan ; Yang, Mei ; Wang, Bao ; Wang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3035-947c922af0419ab4ca38123d2b9c3f3e70c52b077b84b56ba60fa447d05c628f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Charge transfer</topic><topic>Confinement</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>hollow multi-shelled structures (HoMSs)</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Mechanical properties</topic><topic>Organic chemistry</topic><topic>polysulfides</topic><topic>Specific capacity</topic><topic>Sulfur</topic><topic>titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salhabi, Esmail Husein M.</creatorcontrib><creatorcontrib>Zhao, Jilu</creatorcontrib><creatorcontrib>Wang, Jiangyan</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salhabi, Esmail Husein M.</au><au>Zhao, Jilu</au><au>Wang, Jiangyan</au><au>Yang, Mei</au><au>Wang, Bao</au><au>Wang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>58</volume><issue>27</issue><spage>9078</spage><epage>9082</epage><pages>9078-9082</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>TiO2−x with well‐controlled hollow multi‐shelled structures (HoMSs) were designed and synthesized, via a sequential templating approach (STA), to act as sulfur carrier materials. They were explored as physico‐chemical encapsulation materials. Particularly, the sulfur cathode based on triple‐shelled TiO2−x HoMSs delivered a specific capacity of 903 mAh g−1 with a capacity retention of 79 % at 0.5 C and a Coulombic efficiency of 97.5 % over 1000 cycles. The outstanding electrochemical performance is attributed to better spatial confinement and integrated conductivity of the intact triple‐shell that combine the features of physico‐chemical adsorption, short charge transfer path along with mechanical strength. Three shells: A TiO2−x hollow multi‐shelled structure (HoMS) used as sulfur carrier can significantly improve the coulombic efficiency and cycling stability of Li–S batteries. The three separated layers not only trap polysulfide through physical confinement, but the interlayer voids can efficiently buffer the volume expansion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201903295</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2670-8894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2019-07, Vol.58 (27), p.9078-9082
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2232094024
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Charge transfer
Confinement
Electrochemical analysis
Electrochemistry
hollow multi-shelled structures (HoMSs)
Lithium
Lithium sulfur batteries
Li–S batteries
Mechanical properties
Organic chemistry
polysulfides
Specific capacity
Sulfur
titanium
Titanium dioxide
title Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20Multi%E2%80%90Shelled%20Structural%20TiO2%E2%88%92x%20with%20Multiple%20Spatial%20Confinement%20for%20Long%E2%80%90Life%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Salhabi,%20Esmail%20Husein%20M.&rft.date=2019-07-01&rft.volume=58&rft.issue=27&rft.spage=9078&rft.epage=9082&rft.pages=9078-9082&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903295&rft_dat=%3Cproquest_wiley%3E2232094024%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253678011&rft_id=info:pmid/&rfr_iscdi=true