Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway
Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoart...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2019-07, Vol.18 (13), p.1473-1489 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1489 |
---|---|
container_issue | 13 |
container_start_page | 1473 |
container_title | Cell cycle (Georgetown, Tex.) |
container_volume | 18 |
creator | Ma, Zhengmin Jin, Xinxin Qian, Zhuang Li, Fang Xu, Mao Zhang, Ying Kang, Xiaomin Li, Huixia Gao, Xin Zhao, Liting Zhang, Zhuanmin Zhang, Yan Wu, Shufang Sun, Hongzhi |
description | Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway. |
doi_str_mv | 10.1080/15384101.2019.1620572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232077285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232077285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi1ERX_gEUBessnU14kTZ4OgpdNWqsQG2Foe25kxOHawHap5LF6EZ2rSmanohtW1dM_3XUsHobdAFkA4OQdW8goILCiBdgE1JayhL9AJMAZFRQh7Ob9LXszQMTpN6QchlDctvELHJQBpoGxO0PjZOJNt8Dh0WLmgfuK18QZf9NIBtv0gbTQa543BahO8jkFts8Hd6NVjSo8G54C1TXEcDj0zfXO7hL9_iu9X10uc7NpLZ_0aDzJv7uX2NTrqpEvmzX6eoW_Lq6-XN8Xdl-vby093hapqngtdAdMlpxUBrtua1woYle2qqle8oYwDSFLqivK6ajXnK6UY1IRxTgiA6tryDH3Y9Q7jqjdaGZ-jdGKItpdxK4K04vnG241Yh9-iZi2lFZ8K3u8LYvg1mpRFb5MyzklvwpgEpSUlTUM5m1C2Q1UMKUXTPZ0BImZl4qBMzMrEXtmUe_fvH59SB0cT8HEHWN-F2Mv7EJ0WWW5diF2UXtk0wf-98QBCCKX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232077285</pqid></control><display><type>article</type><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</creator><creatorcontrib>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</creatorcontrib><description>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2019.1620572</identifier><identifier>PMID: 31107137</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; Apoptosis - physiology ; ARNTL Transcription Factors - metabolism ; Bmal1 ; Cartilage - metabolism ; Cells, Cultured ; Chondrocytes - metabolism ; Chondrogenesis - physiology ; Circadian rhythm ; Circadian Rhythm - physiology ; endochondral ossification ; Female ; growth plate chondrocytes ; HIF ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Research Paper ; Signal Transduction - physiology ; Vascular Endothelial Growth Factor A - metabolism ; VEGF</subject><ispartof>Cell cycle (Georgetown, Tex.), 2019-07, Vol.18 (13), p.1473-1489</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</citedby><cites>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592248/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592248/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31107137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhengmin</creatorcontrib><creatorcontrib>Jin, Xinxin</creatorcontrib><creatorcontrib>Qian, Zhuang</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Mao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Kang, Xiaomin</creatorcontrib><creatorcontrib>Li, Huixia</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zhao, Liting</creatorcontrib><creatorcontrib>Zhang, Zhuanmin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wu, Shufang</creatorcontrib><creatorcontrib>Sun, Hongzhi</creatorcontrib><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>ARNTL Transcription Factors - metabolism</subject><subject>Bmal1</subject><subject>Cartilage - metabolism</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>endochondral ossification</subject><subject>Female</subject><subject>growth plate chondrocytes</subject><subject>HIF</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Research Paper</subject><subject>Signal Transduction - physiology</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi1ERX_gEUBessnU14kTZ4OgpdNWqsQG2Foe25kxOHawHap5LF6EZ2rSmanohtW1dM_3XUsHobdAFkA4OQdW8goILCiBdgE1JayhL9AJMAZFRQh7Ob9LXszQMTpN6QchlDctvELHJQBpoGxO0PjZOJNt8Dh0WLmgfuK18QZf9NIBtv0gbTQa543BahO8jkFts8Hd6NVjSo8G54C1TXEcDj0zfXO7hL9_iu9X10uc7NpLZ_0aDzJv7uX2NTrqpEvmzX6eoW_Lq6-XN8Xdl-vby093hapqngtdAdMlpxUBrtua1woYle2qqle8oYwDSFLqivK6ajXnK6UY1IRxTgiA6tryDH3Y9Q7jqjdaGZ-jdGKItpdxK4K04vnG241Yh9-iZi2lFZ8K3u8LYvg1mpRFb5MyzklvwpgEpSUlTUM5m1C2Q1UMKUXTPZ0BImZl4qBMzMrEXtmUe_fvH59SB0cT8HEHWN-F2Mv7EJ0WWW5diF2UXtk0wf-98QBCCKX8</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Ma, Zhengmin</creator><creator>Jin, Xinxin</creator><creator>Qian, Zhuang</creator><creator>Li, Fang</creator><creator>Xu, Mao</creator><creator>Zhang, Ying</creator><creator>Kang, Xiaomin</creator><creator>Li, Huixia</creator><creator>Gao, Xin</creator><creator>Zhao, Liting</creator><creator>Zhang, Zhuanmin</creator><creator>Zhang, Yan</creator><creator>Wu, Shufang</creator><creator>Sun, Hongzhi</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><author>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>ARNTL Transcription Factors - metabolism</topic><topic>Bmal1</topic><topic>Cartilage - metabolism</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>endochondral ossification</topic><topic>Female</topic><topic>growth plate chondrocytes</topic><topic>HIF</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Research Paper</topic><topic>Signal Transduction - physiology</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhengmin</creatorcontrib><creatorcontrib>Jin, Xinxin</creatorcontrib><creatorcontrib>Qian, Zhuang</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Mao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Kang, Xiaomin</creatorcontrib><creatorcontrib>Li, Huixia</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zhao, Liting</creatorcontrib><creatorcontrib>Zhang, Zhuanmin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wu, Shufang</creatorcontrib><creatorcontrib>Sun, Hongzhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhengmin</au><au>Jin, Xinxin</au><au>Qian, Zhuang</au><au>Li, Fang</au><au>Xu, Mao</au><au>Zhang, Ying</au><au>Kang, Xiaomin</au><au>Li, Huixia</au><au>Gao, Xin</au><au>Zhao, Liting</au><au>Zhang, Zhuanmin</au><au>Zhang, Yan</au><au>Wu, Shufang</au><au>Sun, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>18</volume><issue>13</issue><spage>1473</spage><epage>1489</epage><pages>1473-1489</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>31107137</pmid><doi>10.1080/15384101.2019.1620572</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4101 |
ispartof | Cell cycle (Georgetown, Tex.), 2019-07, Vol.18 (13), p.1473-1489 |
issn | 1538-4101 1551-4005 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232077285 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Apoptosis - physiology ARNTL Transcription Factors - metabolism Bmal1 Cartilage - metabolism Cells, Cultured Chondrocytes - metabolism Chondrogenesis - physiology Circadian rhythm Circadian Rhythm - physiology endochondral ossification Female growth plate chondrocytes HIF Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Mice Mice, Knockout Mice, Transgenic Research Paper Signal Transduction - physiology Vascular Endothelial Growth Factor A - metabolism VEGF |
title | Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20clock%20gene%20Bmal1%20impaired%20the%20chondrocyte%20function%20due%20to%20disruption%20of%20the%20HIF1%CE%B1-VEGF%20signaling%20pathway&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Ma,%20Zhengmin&rft.date=2019-07-03&rft.volume=18&rft.issue=13&rft.spage=1473&rft.epage=1489&rft.pages=1473-1489&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2019.1620572&rft_dat=%3Cproquest_pubme%3E2232077285%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232077285&rft_id=info:pmid/31107137&rfr_iscdi=true |