Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway

Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2019-07, Vol.18 (13), p.1473-1489
Hauptverfasser: Ma, Zhengmin, Jin, Xinxin, Qian, Zhuang, Li, Fang, Xu, Mao, Zhang, Ying, Kang, Xiaomin, Li, Huixia, Gao, Xin, Zhao, Liting, Zhang, Zhuanmin, Zhang, Yan, Wu, Shufang, Sun, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 13
container_start_page 1473
container_title Cell cycle (Georgetown, Tex.)
container_volume 18
creator Ma, Zhengmin
Jin, Xinxin
Qian, Zhuang
Li, Fang
Xu, Mao
Zhang, Ying
Kang, Xiaomin
Li, Huixia
Gao, Xin
Zhao, Liting
Zhang, Zhuanmin
Zhang, Yan
Wu, Shufang
Sun, Hongzhi
description Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.
doi_str_mv 10.1080/15384101.2019.1620572
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232077285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232077285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi1ERX_gEUBessnU14kTZ4OgpdNWqsQG2Foe25kxOHawHap5LF6EZ2rSmanohtW1dM_3XUsHobdAFkA4OQdW8goILCiBdgE1JayhL9AJMAZFRQh7Ob9LXszQMTpN6QchlDctvELHJQBpoGxO0PjZOJNt8Dh0WLmgfuK18QZf9NIBtv0gbTQa543BahO8jkFts8Hd6NVjSo8G54C1TXEcDj0zfXO7hL9_iu9X10uc7NpLZ_0aDzJv7uX2NTrqpEvmzX6eoW_Lq6-XN8Xdl-vby093hapqngtdAdMlpxUBrtua1woYle2qqle8oYwDSFLqivK6ajXnK6UY1IRxTgiA6tryDH3Y9Q7jqjdaGZ-jdGKItpdxK4K04vnG241Yh9-iZi2lFZ8K3u8LYvg1mpRFb5MyzklvwpgEpSUlTUM5m1C2Q1UMKUXTPZ0BImZl4qBMzMrEXtmUe_fvH59SB0cT8HEHWN-F2Mv7EJ0WWW5diF2UXtk0wf-98QBCCKX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232077285</pqid></control><display><type>article</type><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</creator><creatorcontrib>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</creatorcontrib><description>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2019.1620572</identifier><identifier>PMID: 31107137</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Apoptosis - physiology ; ARNTL Transcription Factors - metabolism ; Bmal1 ; Cartilage - metabolism ; Cells, Cultured ; Chondrocytes - metabolism ; Chondrogenesis - physiology ; Circadian rhythm ; Circadian Rhythm - physiology ; endochondral ossification ; Female ; growth plate chondrocytes ; HIF ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Research Paper ; Signal Transduction - physiology ; Vascular Endothelial Growth Factor A - metabolism ; VEGF</subject><ispartof>Cell cycle (Georgetown, Tex.), 2019-07, Vol.18 (13), p.1473-1489</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</citedby><cites>FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592248/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592248/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31107137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zhengmin</creatorcontrib><creatorcontrib>Jin, Xinxin</creatorcontrib><creatorcontrib>Qian, Zhuang</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Mao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Kang, Xiaomin</creatorcontrib><creatorcontrib>Li, Huixia</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zhao, Liting</creatorcontrib><creatorcontrib>Zhang, Zhuanmin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wu, Shufang</creatorcontrib><creatorcontrib>Sun, Hongzhi</creatorcontrib><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>ARNTL Transcription Factors - metabolism</subject><subject>Bmal1</subject><subject>Cartilage - metabolism</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>endochondral ossification</subject><subject>Female</subject><subject>growth plate chondrocytes</subject><subject>HIF</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Research Paper</subject><subject>Signal Transduction - physiology</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi1ERX_gEUBessnU14kTZ4OgpdNWqsQG2Foe25kxOHawHap5LF6EZ2rSmanohtW1dM_3XUsHobdAFkA4OQdW8goILCiBdgE1JayhL9AJMAZFRQh7Ob9LXszQMTpN6QchlDctvELHJQBpoGxO0PjZOJNt8Dh0WLmgfuK18QZf9NIBtv0gbTQa543BahO8jkFts8Hd6NVjSo8G54C1TXEcDj0zfXO7hL9_iu9X10uc7NpLZ_0aDzJv7uX2NTrqpEvmzX6eoW_Lq6-XN8Xdl-vby093hapqngtdAdMlpxUBrtua1woYle2qqle8oYwDSFLqivK6ajXnK6UY1IRxTgiA6tryDH3Y9Q7jqjdaGZ-jdGKItpdxK4K04vnG241Yh9-iZi2lFZ8K3u8LYvg1mpRFb5MyzklvwpgEpSUlTUM5m1C2Q1UMKUXTPZ0BImZl4qBMzMrEXtmUe_fvH59SB0cT8HEHWN-F2Mv7EJ0WWW5diF2UXtk0wf-98QBCCKX8</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Ma, Zhengmin</creator><creator>Jin, Xinxin</creator><creator>Qian, Zhuang</creator><creator>Li, Fang</creator><creator>Xu, Mao</creator><creator>Zhang, Ying</creator><creator>Kang, Xiaomin</creator><creator>Li, Huixia</creator><creator>Gao, Xin</creator><creator>Zhao, Liting</creator><creator>Zhang, Zhuanmin</creator><creator>Zhang, Yan</creator><creator>Wu, Shufang</creator><creator>Sun, Hongzhi</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190703</creationdate><title>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</title><author>Ma, Zhengmin ; Jin, Xinxin ; Qian, Zhuang ; Li, Fang ; Xu, Mao ; Zhang, Ying ; Kang, Xiaomin ; Li, Huixia ; Gao, Xin ; Zhao, Liting ; Zhang, Zhuanmin ; Zhang, Yan ; Wu, Shufang ; Sun, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-d415d3824018d9686c152a9b46b8725811a03d428649d88bcc51605880011cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>ARNTL Transcription Factors - metabolism</topic><topic>Bmal1</topic><topic>Cartilage - metabolism</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>endochondral ossification</topic><topic>Female</topic><topic>growth plate chondrocytes</topic><topic>HIF</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Research Paper</topic><topic>Signal Transduction - physiology</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhengmin</creatorcontrib><creatorcontrib>Jin, Xinxin</creatorcontrib><creatorcontrib>Qian, Zhuang</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Mao</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Kang, Xiaomin</creatorcontrib><creatorcontrib>Li, Huixia</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Zhao, Liting</creatorcontrib><creatorcontrib>Zhang, Zhuanmin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wu, Shufang</creatorcontrib><creatorcontrib>Sun, Hongzhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhengmin</au><au>Jin, Xinxin</au><au>Qian, Zhuang</au><au>Li, Fang</au><au>Xu, Mao</au><au>Zhang, Ying</au><au>Kang, Xiaomin</au><au>Li, Huixia</au><au>Gao, Xin</au><au>Zhao, Liting</au><au>Zhang, Zhuanmin</au><au>Zhang, Yan</au><au>Wu, Shufang</au><au>Sun, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>18</volume><issue>13</issue><spage>1473</spage><epage>1489</epage><pages>1473-1489</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Several studies have demonstrated the core circadian rhythm gene Bmal1 could regulate the clock control genes (CCGs) expression and maintain the integrity in cartilage tissue. In addition, its abnormal expression is connected with the occurrence and development of several diseases including osteoarthritis (OA). However, the relationship between Bmal1 and cartilage development still needs to be fully elucidated. Here, we bred tamoxifen-induced cartilage-specific knockout mice to learn the effects of Bmal1 on the cartilage development and its underlying mechanisms at specific time points. We observed that Bmal1 ablated mice showed growth retardation during puberty, and the length of whole growth plate and the proliferation zone were both shorter than those in the control group. Deletion of Bmal1 significantly inhibited the chondrocytes proliferation and activated cells apoptosis in the growth plate. Meanwhile, knockout of Bmal1 attenuated the expression of VEGF and HIF1α and enhanced the level of MMP13 and Runx2 in the growth plate chondrocytes. Consistent with these findings in vivo, ablation of Bmal1 could also lead to decrease chondrocytes proliferation, the expression of HIF1α and VEGF and elevate apoptosis in cultured chondrocytes. These findings suggest that Bmal1 plays a pivotal role in cartilage development by regulating the HIF1α-VEGF signaling pathway.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>31107137</pmid><doi>10.1080/15384101.2019.1620572</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell cycle (Georgetown, Tex.), 2019-07, Vol.18 (13), p.1473-1489
issn 1538-4101
1551-4005
language eng
recordid cdi_proquest_miscellaneous_2232077285
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Apoptosis - physiology
ARNTL Transcription Factors - metabolism
Bmal1
Cartilage - metabolism
Cells, Cultured
Chondrocytes - metabolism
Chondrogenesis - physiology
Circadian rhythm
Circadian Rhythm - physiology
endochondral ossification
Female
growth plate chondrocytes
HIF
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Mice
Mice, Knockout
Mice, Transgenic
Research Paper
Signal Transduction - physiology
Vascular Endothelial Growth Factor A - metabolism
VEGF
title Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20clock%20gene%20Bmal1%20impaired%20the%20chondrocyte%20function%20due%20to%20disruption%20of%20the%20HIF1%CE%B1-VEGF%20signaling%20pathway&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Ma,%20Zhengmin&rft.date=2019-07-03&rft.volume=18&rft.issue=13&rft.spage=1473&rft.epage=1489&rft.pages=1473-1489&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2019.1620572&rft_dat=%3Cproquest_pubme%3E2232077285%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232077285&rft_id=info:pmid/31107137&rfr_iscdi=true