Domain‐Swapping Design by Polyproline Rod Insertion

During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain‐swapping formation by loop d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2019-10, Vol.20 (19), p.2454-2457
Hauptverfasser: Shiga, Shota, Yamanaka, Masaru, Fujiwara, Wataru, Hirota, Shun, Goda, Shuichiro, Makabe, Koki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2457
container_issue 19
container_start_page 2454
container_title Chembiochem : a European journal of chemical biology
container_volume 20
creator Shiga, Shota
Yamanaka, Masaru
Fujiwara, Wataru
Hirota, Shun
Goda, Shuichiro
Makabe, Koki
description During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain‐swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain‐swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small‐angle X‐ray scattering demonstrated that an extended orientation of domain‐swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation. Straighten up! During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. To achieve domain swapping by design, insertion of a rigid polyproline rod has been investigated. Crystal structure and small‐angle X‐ray scattering analyses confirm the extended orientation of the two subunits.
doi_str_mv 10.1002/cbic.201900179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232047651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232047651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-c1b76c228ecfdc6f9a6c9cd353c6a5a4025e23f010914379bf815839295e93413</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqWwMqJILCwpvsROPELLpVIlEJfZchyncpXYIW5UZeMReEaeBFctILEwnTN85z-ffgBOERwjCPGlyo0aY4g4hCjle2CIEsLjlBGyv9sTjNMBOPJ-CSHkjKBDMCAI8gRSPgR06mpp7Of7x_NaNo2xi2iqvVnYKO-jR1f1TesqY3X05IpoZr1uV8bZY3BQysrrk90cgdfbm5fJfTx_uJtNruaxSlLGY4XylCmMM63KQrGSS6a4KgglikkqE4ipxqSEwSaopjwvM0QzwjGnmpMEkRG42OYGi7dO-5WojVe6qqTVrvMCY4JheEU36PkfdOm61ga7QHFOaEoyFqjxllKt877VpWhaU8u2FwiKTaFiU6j4KTQcnO1iu7zWxQ_-3WAA-BZYm0r3_8SJyfVs8hv-BWdDgEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299357386</pqid></control><display><type>article</type><title>Domain‐Swapping Design by Polyproline Rod Insertion</title><source>Wiley Online Library All Journals</source><creator>Shiga, Shota ; Yamanaka, Masaru ; Fujiwara, Wataru ; Hirota, Shun ; Goda, Shuichiro ; Makabe, Koki</creator><creatorcontrib>Shiga, Shota ; Yamanaka, Masaru ; Fujiwara, Wataru ; Hirota, Shun ; Goda, Shuichiro ; Makabe, Koki</creatorcontrib><description>During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain‐swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain‐swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small‐angle X‐ray scattering demonstrated that an extended orientation of domain‐swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation. Straighten up! During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. To achieve domain swapping by design, insertion of a rigid polyproline rod has been investigated. Crystal structure and small‐angle X‐ray scattering analyses confirm the extended orientation of the two subunits.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900179</identifier><identifier>PMID: 31094059</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>biophysics ; Control rods ; Crystal structure ; Design ; Design modifications ; Dimers ; domain swapping ; Insertion ; Molecular structure ; Polyproline ; Proline ; protein design ; protein folding ; Proteins ; Structural members</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (19), p.2454-2457</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-c1b76c228ecfdc6f9a6c9cd353c6a5a4025e23f010914379bf815839295e93413</citedby><cites>FETCH-LOGICAL-c4769-c1b76c228ecfdc6f9a6c9cd353c6a5a4025e23f010914379bf815839295e93413</cites><orcidid>0000-0003-3168-8445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900179$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900179$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31094059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiga, Shota</creatorcontrib><creatorcontrib>Yamanaka, Masaru</creatorcontrib><creatorcontrib>Fujiwara, Wataru</creatorcontrib><creatorcontrib>Hirota, Shun</creatorcontrib><creatorcontrib>Goda, Shuichiro</creatorcontrib><creatorcontrib>Makabe, Koki</creatorcontrib><title>Domain‐Swapping Design by Polyproline Rod Insertion</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain‐swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain‐swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small‐angle X‐ray scattering demonstrated that an extended orientation of domain‐swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation. Straighten up! During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. To achieve domain swapping by design, insertion of a rigid polyproline rod has been investigated. Crystal structure and small‐angle X‐ray scattering analyses confirm the extended orientation of the two subunits.</description><subject>biophysics</subject><subject>Control rods</subject><subject>Crystal structure</subject><subject>Design</subject><subject>Design modifications</subject><subject>Dimers</subject><subject>domain swapping</subject><subject>Insertion</subject><subject>Molecular structure</subject><subject>Polyproline</subject><subject>Proline</subject><subject>protein design</subject><subject>protein folding</subject><subject>Proteins</subject><subject>Structural members</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EoqWwMqJILCwpvsROPELLpVIlEJfZchyncpXYIW5UZeMReEaeBFctILEwnTN85z-ffgBOERwjCPGlyo0aY4g4hCjle2CIEsLjlBGyv9sTjNMBOPJ-CSHkjKBDMCAI8gRSPgR06mpp7Of7x_NaNo2xi2iqvVnYKO-jR1f1TesqY3X05IpoZr1uV8bZY3BQysrrk90cgdfbm5fJfTx_uJtNruaxSlLGY4XylCmMM63KQrGSS6a4KgglikkqE4ipxqSEwSaopjwvM0QzwjGnmpMEkRG42OYGi7dO-5WojVe6qqTVrvMCY4JheEU36PkfdOm61ga7QHFOaEoyFqjxllKt877VpWhaU8u2FwiKTaFiU6j4KTQcnO1iu7zWxQ_-3WAA-BZYm0r3_8SJyfVs8hv-BWdDgEQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Shiga, Shota</creator><creator>Yamanaka, Masaru</creator><creator>Fujiwara, Wataru</creator><creator>Hirota, Shun</creator><creator>Goda, Shuichiro</creator><creator>Makabe, Koki</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3168-8445</orcidid></search><sort><creationdate>20191001</creationdate><title>Domain‐Swapping Design by Polyproline Rod Insertion</title><author>Shiga, Shota ; Yamanaka, Masaru ; Fujiwara, Wataru ; Hirota, Shun ; Goda, Shuichiro ; Makabe, Koki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-c1b76c228ecfdc6f9a6c9cd353c6a5a4025e23f010914379bf815839295e93413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>biophysics</topic><topic>Control rods</topic><topic>Crystal structure</topic><topic>Design</topic><topic>Design modifications</topic><topic>Dimers</topic><topic>domain swapping</topic><topic>Insertion</topic><topic>Molecular structure</topic><topic>Polyproline</topic><topic>Proline</topic><topic>protein design</topic><topic>protein folding</topic><topic>Proteins</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiga, Shota</creatorcontrib><creatorcontrib>Yamanaka, Masaru</creatorcontrib><creatorcontrib>Fujiwara, Wataru</creatorcontrib><creatorcontrib>Hirota, Shun</creatorcontrib><creatorcontrib>Goda, Shuichiro</creatorcontrib><creatorcontrib>Makabe, Koki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiga, Shota</au><au>Yamanaka, Masaru</au><au>Fujiwara, Wataru</au><au>Hirota, Shun</au><au>Goda, Shuichiro</au><au>Makabe, Koki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain‐Swapping Design by Polyproline Rod Insertion</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>20</volume><issue>19</issue><spage>2454</spage><epage>2457</epage><pages>2454-2457</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain‐swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain‐swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small‐angle X‐ray scattering demonstrated that an extended orientation of domain‐swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation. Straighten up! During domain swapping, proteins mutually interconvert structural elements to form a di‐/oligomer. To achieve domain swapping by design, insertion of a rigid polyproline rod has been investigated. Crystal structure and small‐angle X‐ray scattering analyses confirm the extended orientation of the two subunits.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31094059</pmid><doi>10.1002/cbic.201900179</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3168-8445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (19), p.2454-2457
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2232047651
source Wiley Online Library All Journals
subjects biophysics
Control rods
Crystal structure
Design
Design modifications
Dimers
domain swapping
Insertion
Molecular structure
Polyproline
Proline
protein design
protein folding
Proteins
Structural members
title Domain‐Swapping Design by Polyproline Rod Insertion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%E2%80%90Swapping%20Design%20by%20Polyproline%20Rod%20Insertion&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Shiga,%20Shota&rft.date=2019-10-01&rft.volume=20&rft.issue=19&rft.spage=2454&rft.epage=2457&rft.pages=2454-2457&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900179&rft_dat=%3Cproquest_cross%3E2232047651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299357386&rft_id=info:pmid/31094059&rfr_iscdi=true