Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks
The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-01, Vol.18 (1), p.336-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 1 |
container_start_page | 336 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Shang, Haixia Liu, Zhi-Ping |
description | The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes. |
doi_str_mv | 10.1109/TCBB.2019.2917190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232045105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8716303</ieee_id><sourcerecordid>2486598701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMofv8AESTgxcvWydfu5mjrJ4iKVMRTyO7O1mi7W5MtUn-9qa0evGQC87zDzEPIAYMeY6BPh4N-v8eB6R7XLGMa1sg2UypLtE7l-uIvVaJ0KrbITghvAFxqkJtkS8S0klpuk5cH71rvOvflmhEdzqdIOT13tsAOA73CJr7FnD6jG712WNEHO8JH27zTtqF9N7Zz9PQ6sr4dRbadBXqH3Wfr38Me2ajtOOD-qu6Sp8uL4eA6ub2_uhmc3SalkLpLUlsjomRlJmuei5TzMpVW6YpZUWqsGYdMVwClrmwmwSLXRSVBFKkVBeaF2CUny7lT337MMHRm4kKJ47H92cdwLjhIxUBF9Pgf-tbOfBO3M1zmqdJ5BixSbEmVvg3BY22m3k2snxsGZuHdLLybhXez8h4zR6vJs2KC1V_iV3QEDpeAi9f-tfOMpQKE-AbrRIYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486598701</pqid></control><display><type>article</type><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shang, Haixia ; Liu, Zhi-Ping</creator><creatorcontrib>Shang, Haixia ; Liu, Zhi-Ping</creatorcontrib><description>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2917190</identifier><identifier>PMID: 31095494</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; bilayer network ; Bioinformatics ; Computational Biology - methods ; Computer applications ; Computer networks ; Databases, Genetic ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; differential mutual information ; Disease ; Diseases ; Environmental effects ; Functional analysis ; Gene Regulatory Networks - genetics ; Genes ; Genetics ; Heterogeneous networks ; Humans ; Medical treatment ; Network medicine ; Networks ; Pathogenesis ; Protein interaction ; Protein Interaction Maps - genetics ; Proteins ; Proteomics ; Rats ; Search engines ; type 2 diabetes ; weighted PageRank</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-01, Vol.18 (1), p.336-346</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</citedby><cites>FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</cites><orcidid>0000-0001-7742-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8716303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8716303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31095494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Haixia</creatorcontrib><creatorcontrib>Liu, Zhi-Ping</creatorcontrib><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</description><subject>Algorithms</subject><subject>bilayer network</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer networks</subject><subject>Databases, Genetic</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>differential mutual information</subject><subject>Disease</subject><subject>Diseases</subject><subject>Environmental effects</subject><subject>Functional analysis</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heterogeneous networks</subject><subject>Humans</subject><subject>Medical treatment</subject><subject>Network medicine</subject><subject>Networks</subject><subject>Pathogenesis</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Search engines</subject><subject>type 2 diabetes</subject><subject>weighted PageRank</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMofv8AESTgxcvWydfu5mjrJ4iKVMRTyO7O1mi7W5MtUn-9qa0evGQC87zDzEPIAYMeY6BPh4N-v8eB6R7XLGMa1sg2UypLtE7l-uIvVaJ0KrbITghvAFxqkJtkS8S0klpuk5cH71rvOvflmhEdzqdIOT13tsAOA73CJr7FnD6jG712WNEHO8JH27zTtqF9N7Zz9PQ6sr4dRbadBXqH3Wfr38Me2ajtOOD-qu6Sp8uL4eA6ub2_uhmc3SalkLpLUlsjomRlJmuei5TzMpVW6YpZUWqsGYdMVwClrmwmwSLXRSVBFKkVBeaF2CUny7lT337MMHRm4kKJ47H92cdwLjhIxUBF9Pgf-tbOfBO3M1zmqdJ5BixSbEmVvg3BY22m3k2snxsGZuHdLLybhXez8h4zR6vJs2KC1V_iV3QEDpeAi9f-tfOMpQKE-AbrRIYF</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Shang, Haixia</creator><creator>Liu, Zhi-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7742-9161</orcidid></search><sort><creationdate>202101</creationdate><title>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</title><author>Shang, Haixia ; Liu, Zhi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6afeee41c74f283622c64a59d1a3c9ef12079d00c9da740ae29bd403b6a3be8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>bilayer network</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer networks</topic><topic>Databases, Genetic</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>differential mutual information</topic><topic>Disease</topic><topic>Diseases</topic><topic>Environmental effects</topic><topic>Functional analysis</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heterogeneous networks</topic><topic>Humans</topic><topic>Medical treatment</topic><topic>Network medicine</topic><topic>Networks</topic><topic>Pathogenesis</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Search engines</topic><topic>type 2 diabetes</topic><topic>weighted PageRank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Haixia</creatorcontrib><creatorcontrib>Liu, Zhi-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shang, Haixia</au><au>Liu, Zhi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-01</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The prevalence of diabetes mellitus has been increasing rapidly in recent years. Type 2 diabetes makes up about 90 percent cases of diabetes. The interacting mixed effects of genetics and environments build possible interpretable pathogenesis. Thus, finding the causal disease genes is crucial in its clinical diagnosis and medical treatment. Currently, network-based computational method becomes a powerful tool of systematically analyzing complex diseases, such as the identification of candidate disease genes from networks. In this paper, we propose a bioinformatics framework of prioritizing type 2 diabetes genes by leveraging the modified PageRank algorithm on bilayer biomolecular networks consisting an ensemble gene-gene regulatory network and an integrative protein-protein interaction network. We specifically weigh the networks by differential mutual information for measuring the context specificities between genes and between proteins by transcriptomic and proteomic datasets, respectively. After formulating the network into two components of known disease genes and the other normal healthy genes, we rank the diabetes genes and others by bringing the orders in the bilayer network via an improved PageRank algorithm. We conclude that these known disease genes achieve significantly higher ranks compared to these randomly-selected normal genes, and the ranks are robust and consistent in multiple validation scenarios. In functional analysis, these high-ranked genes are identified to perform relevant risks and dysfunctions of type 2 diabetes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31095494</pmid><doi>10.1109/TCBB.2019.2917190</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7742-9161</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-01, Vol.18 (1), p.336-346 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232045105 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms bilayer network Bioinformatics Computational Biology - methods Computer applications Computer networks Databases, Genetic Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics differential mutual information Disease Diseases Environmental effects Functional analysis Gene Regulatory Networks - genetics Genes Genetics Heterogeneous networks Humans Medical treatment Network medicine Networks Pathogenesis Protein interaction Protein Interaction Maps - genetics Proteins Proteomics Rats Search engines type 2 diabetes weighted PageRank |
title | Prioritizing Type 2 Diabetes Genes by Weighted PageRank on Bilayer Heterogeneous Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prioritizing%20Type%202%20Diabetes%20Genes%20by%20Weighted%20PageRank%20on%20Bilayer%20Heterogeneous%20Networks&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Shang,%20Haixia&rft.date=2021-01&rft.volume=18&rft.issue=1&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2917190&rft_dat=%3Cproquest_RIE%3E2486598701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486598701&rft_id=info:pmid/31095494&rft_ieee_id=8716303&rfr_iscdi=true |