Induction of neoantigen-reactive T cells from healthy donors
The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequ...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2019-06, Vol.14 (6), p.1926-1943 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1943 |
---|---|
container_issue | 6 |
container_start_page | 1926 |
container_title | Nature protocols |
container_volume | 14 |
creator | Ali, Muhammad Foldvari, Zsofia Giannakopoulou, Eirini Böschen, Maxi-Lu Strønen, Erlend Yang, Weiwen Toebes, Mireille Schubert, Benjamin Kohlbacher, Oliver Schumacher, Ton N. Olweus, Johanna |
description | The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8
+
T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide–MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2–4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens.
The percentage of cancer neoantigens that are spontaneously recognized by T cells is generally very low. This protocol describes how CD8
+
T cells from healthy donors can be used for enhanced targeting of these neoantigens. |
doi_str_mv | 10.1038/s41596-019-0170-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232043016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A587170080</galeid><sourcerecordid>A587170080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-e0367a5a319d44ace7edd110bb8453c54d81a5f762b583631ea1f2c17dd1b4973</originalsourceid><addsrcrecordid>eNp1kl2L1TAQhoMo7rr6A7yRgjeKdM3ko2nBm8PBjwOLgh7xMqTt9GyXNtlNWnH_vdM9q8sRlxASJs87Gd4Zxp4DPwUuy7dJga6KnENF2_C8eMCOwWieC1NVD2_uKhdQVkfsSUoXnCsjC_OYHUkAEvHimL3b-HZupj74LHSZx-D81O_Q5xEdhX9its0aHIaUdTGM2Tm6YTq_ztrgQ0xP2aPODQmf3Z4n7PuH99v1p_zsy8fNenWWN1qLKUdOvzrtJFStUq5Bg21LFdR1qbRstGpLcLozhah1KQsJ6KATDRiialUZecJe7fNexnA1Y5rs2KelKkcFz8kKIQVXkkNB6Mt_0IswR0_V3VDkVwVwR-3cgLb3XZiia5akdqVLQ17ykhN1-h-KVotj3wSPXU_xA8HrAwExE_6adm5OyW6-fT1k39zPrrY_1p8PadjTTQwpRezsZexHF68tcLvMgt3PgqW22mUW7GLFi1sr5nrE9q_iT_MJEHsg0ZPfYbzz6v6svwHb97lM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232159911</pqid></control><display><type>article</type><title>Induction of neoantigen-reactive T cells from healthy donors</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ali, Muhammad ; Foldvari, Zsofia ; Giannakopoulou, Eirini ; Böschen, Maxi-Lu ; Strønen, Erlend ; Yang, Weiwen ; Toebes, Mireille ; Schubert, Benjamin ; Kohlbacher, Oliver ; Schumacher, Ton N. ; Olweus, Johanna</creator><creatorcontrib>Ali, Muhammad ; Foldvari, Zsofia ; Giannakopoulou, Eirini ; Böschen, Maxi-Lu ; Strønen, Erlend ; Yang, Weiwen ; Toebes, Mireille ; Schubert, Benjamin ; Kohlbacher, Oliver ; Schumacher, Ton N. ; Olweus, Johanna</creatorcontrib><description>The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8
+
T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide–MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2–4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens.
The percentage of cancer neoantigens that are spontaneously recognized by T cells is generally very low. This protocol describes how CD8
+
T cells from healthy donors can be used for enhanced targeting of these neoantigens.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-019-0170-6</identifier><identifier>PMID: 31101906</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/1619/554 ; 631/250/1619/554/1775 ; 631/61/212/2166 ; 631/67/1059/2325 ; 631/67/1059/4042 ; Algorithms ; Analytical Chemistry ; Antigens ; Biological Techniques ; Biomedical and Life Sciences ; Cancer ; Cancer immunotherapy ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; Cells, Cultured ; Computational Biology/Bioinformatics ; Dendritic cells ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Electroporation - methods ; Epitopes ; Epitopes - genetics ; Epitopes - immunology ; Health aspects ; Humans ; Identification and classification ; Immune response ; Immunization ; Immunogenicity ; Immunological research ; Immunotherapy ; Immunotherapy - methods ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Methods ; Microarrays ; Monocytes ; mRNA ; Neoantigens ; Neoplasms - immunology ; Neoplasms - therapy ; Organic Chemistry ; Protocol ; Receptors, Antigen, T-Cell - analysis ; Receptors, Antigen, T-Cell - immunology ; RNA sequencing ; RNA, Messenger - genetics ; T cell receptors ; T cells ; Transfection - methods ; Tumor antigens ; Vaccination</subject><ispartof>Nature protocols, 2019-06, Vol.14 (6), p.1926-1943</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-e0367a5a319d44ace7edd110bb8453c54d81a5f762b583631ea1f2c17dd1b4973</citedby><cites>FETCH-LOGICAL-c552t-e0367a5a319d44ace7edd110bb8453c54d81a5f762b583631ea1f2c17dd1b4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-019-0170-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-019-0170-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31101906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Foldvari, Zsofia</creatorcontrib><creatorcontrib>Giannakopoulou, Eirini</creatorcontrib><creatorcontrib>Böschen, Maxi-Lu</creatorcontrib><creatorcontrib>Strønen, Erlend</creatorcontrib><creatorcontrib>Yang, Weiwen</creatorcontrib><creatorcontrib>Toebes, Mireille</creatorcontrib><creatorcontrib>Schubert, Benjamin</creatorcontrib><creatorcontrib>Kohlbacher, Oliver</creatorcontrib><creatorcontrib>Schumacher, Ton N.</creatorcontrib><creatorcontrib>Olweus, Johanna</creatorcontrib><title>Induction of neoantigen-reactive T cells from healthy donors</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8
+
T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide–MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2–4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens.
The percentage of cancer neoantigens that are spontaneously recognized by T cells is generally very low. This protocol describes how CD8
+
T cells from healthy donors can be used for enhanced targeting of these neoantigens.</description><subject>631/250/1619/554</subject><subject>631/250/1619/554/1775</subject><subject>631/61/212/2166</subject><subject>631/67/1059/2325</subject><subject>631/67/1059/4042</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Antigens</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cells, Cultured</subject><subject>Computational Biology/Bioinformatics</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Electroporation - methods</subject><subject>Epitopes</subject><subject>Epitopes - genetics</subject><subject>Epitopes - immunology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Immune response</subject><subject>Immunization</subject><subject>Immunogenicity</subject><subject>Immunological research</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Monocytes</subject><subject>mRNA</subject><subject>Neoantigens</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>Organic Chemistry</subject><subject>Protocol</subject><subject>Receptors, Antigen, T-Cell - analysis</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>RNA sequencing</subject><subject>RNA, Messenger - genetics</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>Transfection - methods</subject><subject>Tumor antigens</subject><subject>Vaccination</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl2L1TAQhoMo7rr6A7yRgjeKdM3ko2nBm8PBjwOLgh7xMqTt9GyXNtlNWnH_vdM9q8sRlxASJs87Gd4Zxp4DPwUuy7dJga6KnENF2_C8eMCOwWieC1NVD2_uKhdQVkfsSUoXnCsjC_OYHUkAEvHimL3b-HZupj74LHSZx-D81O_Q5xEdhX9its0aHIaUdTGM2Tm6YTq_ztrgQ0xP2aPODQmf3Z4n7PuH99v1p_zsy8fNenWWN1qLKUdOvzrtJFStUq5Bg21LFdR1qbRstGpLcLozhah1KQsJ6KATDRiialUZecJe7fNexnA1Y5rs2KelKkcFz8kKIQVXkkNB6Mt_0IswR0_V3VDkVwVwR-3cgLb3XZiia5akdqVLQ17ykhN1-h-KVotj3wSPXU_xA8HrAwExE_6adm5OyW6-fT1k39zPrrY_1p8PadjTTQwpRezsZexHF68tcLvMgt3PgqW22mUW7GLFi1sr5nrE9q_iT_MJEHsg0ZPfYbzz6v6svwHb97lM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ali, Muhammad</creator><creator>Foldvari, Zsofia</creator><creator>Giannakopoulou, Eirini</creator><creator>Böschen, Maxi-Lu</creator><creator>Strønen, Erlend</creator><creator>Yang, Weiwen</creator><creator>Toebes, Mireille</creator><creator>Schubert, Benjamin</creator><creator>Kohlbacher, Oliver</creator><creator>Schumacher, Ton N.</creator><creator>Olweus, Johanna</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190601</creationdate><title>Induction of neoantigen-reactive T cells from healthy donors</title><author>Ali, Muhammad ; Foldvari, Zsofia ; Giannakopoulou, Eirini ; Böschen, Maxi-Lu ; Strønen, Erlend ; Yang, Weiwen ; Toebes, Mireille ; Schubert, Benjamin ; Kohlbacher, Oliver ; Schumacher, Ton N. ; Olweus, Johanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-e0367a5a319d44ace7edd110bb8453c54d81a5f762b583631ea1f2c17dd1b4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/250/1619/554</topic><topic>631/250/1619/554/1775</topic><topic>631/61/212/2166</topic><topic>631/67/1059/2325</topic><topic>631/67/1059/4042</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Antigens</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cells, Cultured</topic><topic>Computational Biology/Bioinformatics</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Electroporation - methods</topic><topic>Epitopes</topic><topic>Epitopes - genetics</topic><topic>Epitopes - immunology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Immune response</topic><topic>Immunization</topic><topic>Immunogenicity</topic><topic>Immunological research</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Monocytes</topic><topic>mRNA</topic><topic>Neoantigens</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>Organic Chemistry</topic><topic>Protocol</topic><topic>Receptors, Antigen, T-Cell - analysis</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>RNA sequencing</topic><topic>RNA, Messenger - genetics</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>Transfection - methods</topic><topic>Tumor antigens</topic><topic>Vaccination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Foldvari, Zsofia</creatorcontrib><creatorcontrib>Giannakopoulou, Eirini</creatorcontrib><creatorcontrib>Böschen, Maxi-Lu</creatorcontrib><creatorcontrib>Strønen, Erlend</creatorcontrib><creatorcontrib>Yang, Weiwen</creatorcontrib><creatorcontrib>Toebes, Mireille</creatorcontrib><creatorcontrib>Schubert, Benjamin</creatorcontrib><creatorcontrib>Kohlbacher, Oliver</creatorcontrib><creatorcontrib>Schumacher, Ton N.</creatorcontrib><creatorcontrib>Olweus, Johanna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Muhammad</au><au>Foldvari, Zsofia</au><au>Giannakopoulou, Eirini</au><au>Böschen, Maxi-Lu</au><au>Strønen, Erlend</au><au>Yang, Weiwen</au><au>Toebes, Mireille</au><au>Schubert, Benjamin</au><au>Kohlbacher, Oliver</au><au>Schumacher, Ton N.</au><au>Olweus, Johanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of neoantigen-reactive T cells from healthy donors</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>1926</spage><epage>1943</epage><pages>1926-1943</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8
+
T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide–MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2–4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens.
The percentage of cancer neoantigens that are spontaneously recognized by T cells is generally very low. This protocol describes how CD8
+
T cells from healthy donors can be used for enhanced targeting of these neoantigens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31101906</pmid><doi>10.1038/s41596-019-0170-6</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2019-06, Vol.14 (6), p.1926-1943 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232043016 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/250/1619/554 631/250/1619/554/1775 631/61/212/2166 631/67/1059/2325 631/67/1059/4042 Algorithms Analytical Chemistry Antigens Biological Techniques Biomedical and Life Sciences Cancer Cancer immunotherapy CD8 antigen CD8-Positive T-Lymphocytes - immunology Cells, Cultured Computational Biology/Bioinformatics Dendritic cells Dendritic Cells - immunology Dendritic Cells - metabolism Electroporation - methods Epitopes Epitopes - genetics Epitopes - immunology Health aspects Humans Identification and classification Immune response Immunization Immunogenicity Immunological research Immunotherapy Immunotherapy - methods Life Sciences Lymphocytes Lymphocytes T Major histocompatibility complex Methods Microarrays Monocytes mRNA Neoantigens Neoplasms - immunology Neoplasms - therapy Organic Chemistry Protocol Receptors, Antigen, T-Cell - analysis Receptors, Antigen, T-Cell - immunology RNA sequencing RNA, Messenger - genetics T cell receptors T cells Transfection - methods Tumor antigens Vaccination |
title | Induction of neoantigen-reactive T cells from healthy donors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20neoantigen-reactive%20T%20cells%20from%20healthy%20donors&rft.jtitle=Nature%20protocols&rft.au=Ali,%20Muhammad&rft.date=2019-06-01&rft.volume=14&rft.issue=6&rft.spage=1926&rft.epage=1943&rft.pages=1926-1943&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-019-0170-6&rft_dat=%3Cgale_proqu%3EA587170080%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232159911&rft_id=info:pmid/31101906&rft_galeid=A587170080&rfr_iscdi=true |