Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin

Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2020-09, Vol.61, p.406-415
Hauptverfasser: Xiao, Feng, Wang, Haijiao, Shi, Zhuwei, Huang, Qianyue, Huang, Lei, Lian, Jiazhang, Cai, Jin, Xu, Zhinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue
container_start_page 406
container_title Metabolic engineering
container_volume 61
creator Xiao, Feng
Wang, Haijiao
Shi, Zhuwei
Huang, Qianyue
Huang, Lei
Lian, Jiazhang
Cai, Jin
Xu, Zhinan
description Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories. •Multi-level metabolic engineering was performed to improve biotin production in Pseudomonas mutabilis.•Endogenous BioC-BioH and exogenous BioW-BioI pathways showed synergy for biotin overproduction.•Precursor and cofactor supplies were enhanced to boost biotin production.•∼272 mg/L biotin was produced by combining metabolic engineering and bioprocess engineering.
doi_str_mv 10.1016/j.ymben.2019.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232026312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717619300254</els_id><sourcerecordid>2232026312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-107cbe4911ec7187a07c3700c2ef2e10db186724962e69843de7a3da59598d463</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq0KVCj0CSpVPnJJOuMkTnzggFZAK1HRAz1biT1ZeZXY1E6QePt6WeDIaTzS9894Psa-IZQIKH_syud5IF8KQFVCUwI0n9gpgpJFi1199P5u5Qn7ktIOALFR-JmdVAhdI5Q8Zdvf67S4YqInmvhMSz-EyRlOfus8UXR-y8PI_yRabZiD7xOf1wy5ySV-9bDZ5ElY8zFETuPojCO_8McY7GoWF_w-O7iwOH_Ojsd-SvT1tZ6xvzfXD5ufxd397a_N1V1hatEsBUJrBqoVIpl8RNvnvmoBjKBREIIdsJOtqJUUJFVXV5bavrJ9oxrV2VpWZ-ziMDd_4t9KadGzS4amqfcU1qSFqAQIWaHIaHVATQwpRRr1Y3RzH581gt4b1jv9YljvDWtodDacU99fF6zDTPY986Y0A5cHgPKZT46iTnsthqyLZBZtg_twwX9hHY0m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232026312</pqid></control><display><type>article</type><title>Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Feng ; Wang, Haijiao ; Shi, Zhuwei ; Huang, Qianyue ; Huang, Lei ; Lian, Jiazhang ; Cai, Jin ; Xu, Zhinan</creator><creatorcontrib>Xiao, Feng ; Wang, Haijiao ; Shi, Zhuwei ; Huang, Qianyue ; Huang, Lei ; Lian, Jiazhang ; Cai, Jin ; Xu, Zhinan</creatorcontrib><description>Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories. •Multi-level metabolic engineering was performed to improve biotin production in Pseudomonas mutabilis.•Endogenous BioC-BioH and exogenous BioW-BioI pathways showed synergy for biotin overproduction.•Precursor and cofactor supplies were enhanced to boost biotin production.•∼272 mg/L biotin was produced by combining metabolic engineering and bioprocess engineering.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2019.05.005</identifier><identifier>PMID: 31085296</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>BioC-BioH pathway ; BioI-BioW pathway ; Biotin ; Metabolic engineering ; Pseudomonas mutabilis</subject><ispartof>Metabolic engineering, 2020-09, Vol.61, p.406-415</ispartof><rights>2019 International Metabolic Engineering Society</rights><rights>Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-107cbe4911ec7187a07c3700c2ef2e10db186724962e69843de7a3da59598d463</citedby><cites>FETCH-LOGICAL-c425t-107cbe4911ec7187a07c3700c2ef2e10db186724962e69843de7a3da59598d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717619300254$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31085296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wang, Haijiao</creatorcontrib><creatorcontrib>Shi, Zhuwei</creatorcontrib><creatorcontrib>Huang, Qianyue</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Lian, Jiazhang</creatorcontrib><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Xu, Zhinan</creatorcontrib><title>Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories. •Multi-level metabolic engineering was performed to improve biotin production in Pseudomonas mutabilis.•Endogenous BioC-BioH and exogenous BioW-BioI pathways showed synergy for biotin overproduction.•Precursor and cofactor supplies were enhanced to boost biotin production.•∼272 mg/L biotin was produced by combining metabolic engineering and bioprocess engineering.</description><subject>BioC-BioH pathway</subject><subject>BioI-BioW pathway</subject><subject>Biotin</subject><subject>Metabolic engineering</subject><subject>Pseudomonas mutabilis</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq0KVCj0CSpVPnJJOuMkTnzggFZAK1HRAz1biT1ZeZXY1E6QePt6WeDIaTzS9894Psa-IZQIKH_syud5IF8KQFVCUwI0n9gpgpJFi1199P5u5Qn7ktIOALFR-JmdVAhdI5Q8Zdvf67S4YqInmvhMSz-EyRlOfus8UXR-y8PI_yRabZiD7xOf1wy5ySV-9bDZ5ElY8zFETuPojCO_8McY7GoWF_w-O7iwOH_Ojsd-SvT1tZ6xvzfXD5ufxd397a_N1V1hatEsBUJrBqoVIpl8RNvnvmoBjKBREIIdsJOtqJUUJFVXV5bavrJ9oxrV2VpWZ-ziMDd_4t9KadGzS4amqfcU1qSFqAQIWaHIaHVATQwpRRr1Y3RzH581gt4b1jv9YljvDWtodDacU99fF6zDTPY986Y0A5cHgPKZT46iTnsthqyLZBZtg_twwX9hHY0m</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Xiao, Feng</creator><creator>Wang, Haijiao</creator><creator>Shi, Zhuwei</creator><creator>Huang, Qianyue</creator><creator>Huang, Lei</creator><creator>Lian, Jiazhang</creator><creator>Cai, Jin</creator><creator>Xu, Zhinan</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200901</creationdate><title>Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin</title><author>Xiao, Feng ; Wang, Haijiao ; Shi, Zhuwei ; Huang, Qianyue ; Huang, Lei ; Lian, Jiazhang ; Cai, Jin ; Xu, Zhinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-107cbe4911ec7187a07c3700c2ef2e10db186724962e69843de7a3da59598d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BioC-BioH pathway</topic><topic>BioI-BioW pathway</topic><topic>Biotin</topic><topic>Metabolic engineering</topic><topic>Pseudomonas mutabilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Feng</creatorcontrib><creatorcontrib>Wang, Haijiao</creatorcontrib><creatorcontrib>Shi, Zhuwei</creatorcontrib><creatorcontrib>Huang, Qianyue</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Lian, Jiazhang</creatorcontrib><creatorcontrib>Cai, Jin</creatorcontrib><creatorcontrib>Xu, Zhinan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Feng</au><au>Wang, Haijiao</au><au>Shi, Zhuwei</au><au>Huang, Qianyue</au><au>Huang, Lei</au><au>Lian, Jiazhang</au><au>Cai, Jin</au><au>Xu, Zhinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>61</volume><spage>406</spage><epage>415</epage><pages>406-415</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories. •Multi-level metabolic engineering was performed to improve biotin production in Pseudomonas mutabilis.•Endogenous BioC-BioH and exogenous BioW-BioI pathways showed synergy for biotin overproduction.•Precursor and cofactor supplies were enhanced to boost biotin production.•∼272 mg/L biotin was produced by combining metabolic engineering and bioprocess engineering.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>31085296</pmid><doi>10.1016/j.ymben.2019.05.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2020-09, Vol.61, p.406-415
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_2232026312
source Elsevier ScienceDirect Journals
subjects BioC-BioH pathway
BioI-BioW pathway
Biotin
Metabolic engineering
Pseudomonas mutabilis
title Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-level%20metabolic%20engineering%20of%20Pseudomonas%20mutabilis%20ATCC31014%20for%20efficient%20production%20of%20biotin&rft.jtitle=Metabolic%20engineering&rft.au=Xiao,%20Feng&rft.date=2020-09-01&rft.volume=61&rft.spage=406&rft.epage=415&rft.pages=406-415&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2019.05.005&rft_dat=%3Cproquest_cross%3E2232026312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232026312&rft_id=info:pmid/31085296&rft_els_id=S1096717619300254&rfr_iscdi=true