Enzymes involved in phthalate degradation in sulphate‐reducing bacteria
Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in oblig...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2019-10, Vol.21 (10), p.3601-3612 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3612 |
---|---|
container_issue | 10 |
container_start_page | 3601 |
container_title | Environmental microbiology |
container_volume | 21 |
creator | Geiger, Robin Alexander Junghare, Madan Mergelsberg, Mario Ebenau‐Jehle, Christa Jesenofsky, Vivien Jill Jehmlich, Nico von Bergen, Martin Schink, Bernhard Boll, Matthias |
description | Summary
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology. |
doi_str_mv | 10.1111/1462-2920.14681 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232014160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232014160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqUws6FILCyhviVORoQKVCpigdlyfGlT5YadFJWJR-AZeRIcUjqw4ME-Pv7OL-sD4BzBa-TXFNEYhzjF_krjBB2A8b5zuK8RHoET59YQIkYYPAYjgmDCGMVjMJ9V79tSuyCvNnWx0coXQbNqV6IQrQ6UXlqhRJvXVf_guqJZ-f7Xx6fVqpN5tQwyIVttc3EKjowonD7bnRPwcjd7vn0IF0_389ubRSgpwijMNBEsIhlVscmY31SWxlCkiBqhRURNmhgSScMoURAm0uAMCUagjDRK0piSCbgachtbv3batbzMndRFISpdd45jTDBEFMXQo5d_0HXd2cr_jmMCvY7eh6emAyVt7ZzVhjc2L4XdcgR5b5n3HnnvlP9Y9hMXu9wuK7Xa879aPRANwFte6O1_eXz2OB-CvwGoC4b3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300011737</pqid></control><display><type>article</type><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</creator><creatorcontrib>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</creatorcontrib><description>Summary
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14681</identifier><identifier>PMID: 31087742</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aerobic microorganisms ; Alcohols ; Anaerobic bacteria ; Anaerobic microorganisms ; Anaerobiosis ; ATP ; Bacteria ; Biodegradation ; Biology ; Carbon sources ; Catabolism ; Decarboxylation ; Deltaproteobacteria - classification ; Deltaproteobacteria - genetics ; Deltaproteobacteria - metabolism ; Energy resources ; Energy sources ; Environmental degradation ; Enzymes ; Esterases ; Esters ; Flavin ; Genes ; Genomes ; Metabolites ; Microbiological strains ; Microorganisms ; Oxidation-Reduction ; Phthalate esters ; Phthalates ; Phthalic Acids - metabolism ; Proteome - metabolism ; Proteomes ; Sulfates ; Sulfates - metabolism ; Uptake</subject><ispartof>Environmental microbiology, 2019-10, Vol.21 (10), p.3601-3612</ispartof><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</citedby><cites>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</cites><orcidid>0000-0001-8062-8049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14681$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14681$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31087742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiger, Robin Alexander</creatorcontrib><creatorcontrib>Junghare, Madan</creatorcontrib><creatorcontrib>Mergelsberg, Mario</creatorcontrib><creatorcontrib>Ebenau‐Jehle, Christa</creatorcontrib><creatorcontrib>Jesenofsky, Vivien Jill</creatorcontrib><creatorcontrib>Jehmlich, Nico</creatorcontrib><creatorcontrib>von Bergen, Martin</creatorcontrib><creatorcontrib>Schink, Bernhard</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</description><subject>Aerobic microorganisms</subject><subject>Alcohols</subject><subject>Anaerobic bacteria</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Carbon sources</subject><subject>Catabolism</subject><subject>Decarboxylation</subject><subject>Deltaproteobacteria - classification</subject><subject>Deltaproteobacteria - genetics</subject><subject>Deltaproteobacteria - metabolism</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Environmental degradation</subject><subject>Enzymes</subject><subject>Esterases</subject><subject>Esters</subject><subject>Flavin</subject><subject>Genes</subject><subject>Genomes</subject><subject>Metabolites</subject><subject>Microbiological strains</subject><subject>Microorganisms</subject><subject>Oxidation-Reduction</subject><subject>Phthalate esters</subject><subject>Phthalates</subject><subject>Phthalic Acids - metabolism</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><subject>Uptake</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtOwzAUhi0EoqUws6FILCyhviVORoQKVCpigdlyfGlT5YadFJWJR-AZeRIcUjqw4ME-Pv7OL-sD4BzBa-TXFNEYhzjF_krjBB2A8b5zuK8RHoET59YQIkYYPAYjgmDCGMVjMJ9V79tSuyCvNnWx0coXQbNqV6IQrQ6UXlqhRJvXVf_guqJZ-f7Xx6fVqpN5tQwyIVttc3EKjowonD7bnRPwcjd7vn0IF0_389ubRSgpwijMNBEsIhlVscmY31SWxlCkiBqhRURNmhgSScMoURAm0uAMCUagjDRK0piSCbgachtbv3batbzMndRFISpdd45jTDBEFMXQo5d_0HXd2cr_jmMCvY7eh6emAyVt7ZzVhjc2L4XdcgR5b5n3HnnvlP9Y9hMXu9wuK7Xa879aPRANwFte6O1_eXz2OB-CvwGoC4b3</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Geiger, Robin Alexander</creator><creator>Junghare, Madan</creator><creator>Mergelsberg, Mario</creator><creator>Ebenau‐Jehle, Christa</creator><creator>Jesenofsky, Vivien Jill</creator><creator>Jehmlich, Nico</creator><creator>von Bergen, Martin</creator><creator>Schink, Bernhard</creator><creator>Boll, Matthias</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8062-8049</orcidid></search><sort><creationdate>201910</creationdate><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><author>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic microorganisms</topic><topic>Alcohols</topic><topic>Anaerobic bacteria</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Carbon sources</topic><topic>Catabolism</topic><topic>Decarboxylation</topic><topic>Deltaproteobacteria - classification</topic><topic>Deltaproteobacteria - genetics</topic><topic>Deltaproteobacteria - metabolism</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Environmental degradation</topic><topic>Enzymes</topic><topic>Esterases</topic><topic>Esters</topic><topic>Flavin</topic><topic>Genes</topic><topic>Genomes</topic><topic>Metabolites</topic><topic>Microbiological strains</topic><topic>Microorganisms</topic><topic>Oxidation-Reduction</topic><topic>Phthalate esters</topic><topic>Phthalates</topic><topic>Phthalic Acids - metabolism</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Robin Alexander</creatorcontrib><creatorcontrib>Junghare, Madan</creatorcontrib><creatorcontrib>Mergelsberg, Mario</creatorcontrib><creatorcontrib>Ebenau‐Jehle, Christa</creatorcontrib><creatorcontrib>Jesenofsky, Vivien Jill</creatorcontrib><creatorcontrib>Jehmlich, Nico</creatorcontrib><creatorcontrib>von Bergen, Martin</creatorcontrib><creatorcontrib>Schink, Bernhard</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Robin Alexander</au><au>Junghare, Madan</au><au>Mergelsberg, Mario</au><au>Ebenau‐Jehle, Christa</au><au>Jesenofsky, Vivien Jill</au><au>Jehmlich, Nico</au><au>von Bergen, Martin</au><au>Schink, Bernhard</au><au>Boll, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>21</volume><issue>10</issue><spage>3601</spage><epage>3612</epage><pages>3601-3612</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31087742</pmid><doi>10.1111/1462-2920.14681</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8062-8049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2019-10, Vol.21 (10), p.3601-3612 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232014160 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aerobic microorganisms Alcohols Anaerobic bacteria Anaerobic microorganisms Anaerobiosis ATP Bacteria Biodegradation Biology Carbon sources Catabolism Decarboxylation Deltaproteobacteria - classification Deltaproteobacteria - genetics Deltaproteobacteria - metabolism Energy resources Energy sources Environmental degradation Enzymes Esterases Esters Flavin Genes Genomes Metabolites Microbiological strains Microorganisms Oxidation-Reduction Phthalate esters Phthalates Phthalic Acids - metabolism Proteome - metabolism Proteomes Sulfates Sulfates - metabolism Uptake |
title | Enzymes involved in phthalate degradation in sulphate‐reducing bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymes%20involved%20in%20phthalate%20degradation%20in%20sulphate%E2%80%90reducing%20bacteria&rft.jtitle=Environmental%20microbiology&rft.au=Geiger,%20Robin%20Alexander&rft.date=2019-10&rft.volume=21&rft.issue=10&rft.spage=3601&rft.epage=3612&rft.pages=3601-3612&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14681&rft_dat=%3Cproquest_cross%3E2232014160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300011737&rft_id=info:pmid/31087742&rfr_iscdi=true |