Enzymes involved in phthalate degradation in sulphate‐reducing bacteria

Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in oblig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2019-10, Vol.21 (10), p.3601-3612
Hauptverfasser: Geiger, Robin Alexander, Junghare, Madan, Mergelsberg, Mario, Ebenau‐Jehle, Christa, Jesenofsky, Vivien Jill, Jehmlich, Nico, von Bergen, Martin, Schink, Bernhard, Boll, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3612
container_issue 10
container_start_page 3601
container_title Environmental microbiology
container_volume 21
creator Geiger, Robin Alexander
Junghare, Madan
Mergelsberg, Mario
Ebenau‐Jehle, Christa
Jesenofsky, Vivien Jill
Jehmlich, Nico
von Bergen, Martin
Schink, Bernhard
Boll, Matthias
description Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.
doi_str_mv 10.1111/1462-2920.14681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232014160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232014160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqUws6FILCyhviVORoQKVCpigdlyfGlT5YadFJWJR-AZeRIcUjqw4ME-Pv7OL-sD4BzBa-TXFNEYhzjF_krjBB2A8b5zuK8RHoET59YQIkYYPAYjgmDCGMVjMJ9V79tSuyCvNnWx0coXQbNqV6IQrQ6UXlqhRJvXVf_guqJZ-f7Xx6fVqpN5tQwyIVttc3EKjowonD7bnRPwcjd7vn0IF0_389ubRSgpwijMNBEsIhlVscmY31SWxlCkiBqhRURNmhgSScMoURAm0uAMCUagjDRK0piSCbgachtbv3batbzMndRFISpdd45jTDBEFMXQo5d_0HXd2cr_jmMCvY7eh6emAyVt7ZzVhjc2L4XdcgR5b5n3HnnvlP9Y9hMXu9wuK7Xa879aPRANwFte6O1_eXz2OB-CvwGoC4b3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300011737</pqid></control><display><type>article</type><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</creator><creatorcontrib>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</creatorcontrib><description>Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14681</identifier><identifier>PMID: 31087742</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aerobic microorganisms ; Alcohols ; Anaerobic bacteria ; Anaerobic microorganisms ; Anaerobiosis ; ATP ; Bacteria ; Biodegradation ; Biology ; Carbon sources ; Catabolism ; Decarboxylation ; Deltaproteobacteria - classification ; Deltaproteobacteria - genetics ; Deltaproteobacteria - metabolism ; Energy resources ; Energy sources ; Environmental degradation ; Enzymes ; Esterases ; Esters ; Flavin ; Genes ; Genomes ; Metabolites ; Microbiological strains ; Microorganisms ; Oxidation-Reduction ; Phthalate esters ; Phthalates ; Phthalic Acids - metabolism ; Proteome - metabolism ; Proteomes ; Sulfates ; Sulfates - metabolism ; Uptake</subject><ispartof>Environmental microbiology, 2019-10, Vol.21 (10), p.3601-3612</ispartof><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</citedby><cites>FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</cites><orcidid>0000-0001-8062-8049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14681$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14681$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31087742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geiger, Robin Alexander</creatorcontrib><creatorcontrib>Junghare, Madan</creatorcontrib><creatorcontrib>Mergelsberg, Mario</creatorcontrib><creatorcontrib>Ebenau‐Jehle, Christa</creatorcontrib><creatorcontrib>Jesenofsky, Vivien Jill</creatorcontrib><creatorcontrib>Jehmlich, Nico</creatorcontrib><creatorcontrib>von Bergen, Martin</creatorcontrib><creatorcontrib>Schink, Bernhard</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</description><subject>Aerobic microorganisms</subject><subject>Alcohols</subject><subject>Anaerobic bacteria</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>ATP</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Carbon sources</subject><subject>Catabolism</subject><subject>Decarboxylation</subject><subject>Deltaproteobacteria - classification</subject><subject>Deltaproteobacteria - genetics</subject><subject>Deltaproteobacteria - metabolism</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Environmental degradation</subject><subject>Enzymes</subject><subject>Esterases</subject><subject>Esters</subject><subject>Flavin</subject><subject>Genes</subject><subject>Genomes</subject><subject>Metabolites</subject><subject>Microbiological strains</subject><subject>Microorganisms</subject><subject>Oxidation-Reduction</subject><subject>Phthalate esters</subject><subject>Phthalates</subject><subject>Phthalic Acids - metabolism</subject><subject>Proteome - metabolism</subject><subject>Proteomes</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><subject>Uptake</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtOwzAUhi0EoqUws6FILCyhviVORoQKVCpigdlyfGlT5YadFJWJR-AZeRIcUjqw4ME-Pv7OL-sD4BzBa-TXFNEYhzjF_krjBB2A8b5zuK8RHoET59YQIkYYPAYjgmDCGMVjMJ9V79tSuyCvNnWx0coXQbNqV6IQrQ6UXlqhRJvXVf_guqJZ-f7Xx6fVqpN5tQwyIVttc3EKjowonD7bnRPwcjd7vn0IF0_389ubRSgpwijMNBEsIhlVscmY31SWxlCkiBqhRURNmhgSScMoURAm0uAMCUagjDRK0piSCbgachtbv3batbzMndRFISpdd45jTDBEFMXQo5d_0HXd2cr_jmMCvY7eh6emAyVt7ZzVhjc2L4XdcgR5b5n3HnnvlP9Y9hMXu9wuK7Xa879aPRANwFte6O1_eXz2OB-CvwGoC4b3</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Geiger, Robin Alexander</creator><creator>Junghare, Madan</creator><creator>Mergelsberg, Mario</creator><creator>Ebenau‐Jehle, Christa</creator><creator>Jesenofsky, Vivien Jill</creator><creator>Jehmlich, Nico</creator><creator>von Bergen, Martin</creator><creator>Schink, Bernhard</creator><creator>Boll, Matthias</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8062-8049</orcidid></search><sort><creationdate>201910</creationdate><title>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</title><author>Geiger, Robin Alexander ; Junghare, Madan ; Mergelsberg, Mario ; Ebenau‐Jehle, Christa ; Jesenofsky, Vivien Jill ; Jehmlich, Nico ; von Bergen, Martin ; Schink, Bernhard ; Boll, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4121-be3a753b4d6fb7d6fdb960a914faea54f98f35cf743d008cf2b1a730c5e189643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic microorganisms</topic><topic>Alcohols</topic><topic>Anaerobic bacteria</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>ATP</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Carbon sources</topic><topic>Catabolism</topic><topic>Decarboxylation</topic><topic>Deltaproteobacteria - classification</topic><topic>Deltaproteobacteria - genetics</topic><topic>Deltaproteobacteria - metabolism</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Environmental degradation</topic><topic>Enzymes</topic><topic>Esterases</topic><topic>Esters</topic><topic>Flavin</topic><topic>Genes</topic><topic>Genomes</topic><topic>Metabolites</topic><topic>Microbiological strains</topic><topic>Microorganisms</topic><topic>Oxidation-Reduction</topic><topic>Phthalate esters</topic><topic>Phthalates</topic><topic>Phthalic Acids - metabolism</topic><topic>Proteome - metabolism</topic><topic>Proteomes</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Robin Alexander</creatorcontrib><creatorcontrib>Junghare, Madan</creatorcontrib><creatorcontrib>Mergelsberg, Mario</creatorcontrib><creatorcontrib>Ebenau‐Jehle, Christa</creatorcontrib><creatorcontrib>Jesenofsky, Vivien Jill</creatorcontrib><creatorcontrib>Jehmlich, Nico</creatorcontrib><creatorcontrib>von Bergen, Martin</creatorcontrib><creatorcontrib>Schink, Bernhard</creatorcontrib><creatorcontrib>Boll, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Robin Alexander</au><au>Junghare, Madan</au><au>Mergelsberg, Mario</au><au>Ebenau‐Jehle, Christa</au><au>Jesenofsky, Vivien Jill</au><au>Jehmlich, Nico</au><au>von Bergen, Martin</au><au>Schink, Bernhard</au><au>Boll, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymes involved in phthalate degradation in sulphate‐reducing bacteria</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>21</volume><issue>10</issue><spage>3601</spage><epage>3612</epage><pages>3601-3612</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o‐phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ‐proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short‐lived phthaloyl‐CoA by an ATP‐dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl‐CoA by an UbiD‐like phthaloyl‐CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate‐reducing Desulfobacula toluolica, strain NaphS2, and other δ‐proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl‐CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl‐CoA, the possibly most unstable CoA ester in biology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31087742</pmid><doi>10.1111/1462-2920.14681</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8062-8049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2019-10, Vol.21 (10), p.3601-3612
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_2232014160
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aerobic microorganisms
Alcohols
Anaerobic bacteria
Anaerobic microorganisms
Anaerobiosis
ATP
Bacteria
Biodegradation
Biology
Carbon sources
Catabolism
Decarboxylation
Deltaproteobacteria - classification
Deltaproteobacteria - genetics
Deltaproteobacteria - metabolism
Energy resources
Energy sources
Environmental degradation
Enzymes
Esterases
Esters
Flavin
Genes
Genomes
Metabolites
Microbiological strains
Microorganisms
Oxidation-Reduction
Phthalate esters
Phthalates
Phthalic Acids - metabolism
Proteome - metabolism
Proteomes
Sulfates
Sulfates - metabolism
Uptake
title Enzymes involved in phthalate degradation in sulphate‐reducing bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymes%20involved%20in%20phthalate%20degradation%20in%20sulphate%E2%80%90reducing%20bacteria&rft.jtitle=Environmental%20microbiology&rft.au=Geiger,%20Robin%20Alexander&rft.date=2019-10&rft.volume=21&rft.issue=10&rft.spage=3601&rft.epage=3612&rft.pages=3601-3612&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14681&rft_dat=%3Cproquest_cross%3E2232014160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300011737&rft_id=info:pmid/31087742&rfr_iscdi=true