Highly stable fullerene-based porous molecular crystals with open metal sites
The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same envir...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-07, Vol.18 (7), p.740-745 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 745 |
---|---|
container_issue | 7 |
container_start_page | 740 |
container_title | Nature materials |
container_volume | 18 |
creator | Bezzu, C. Grazia Burt, Luke A. McMonagle, Charlie J. Moggach, Stephen A. Kariuki, Benson M. Allan, David R. Warren, Mark McKeown, Neil B. |
description | The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C
60
or C
70
) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.
Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C
60
and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures. |
doi_str_mv | 10.1038/s41563-019-0361-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231998896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243470958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoTqc_wIsEvHip5kvStDnKUCcoXvRc0vTr1pG2M2mR_XszNhUEL0nI9-TNy0PIBbAbYCK_DRJSJRIGOmFCQcIOyAnITCVSKXa4PwNwPiGnIawY45Cm6phMBLBcCchPyMu8WSzdhobBlA5pPTqHHjtMShOwouve92Ogbe_Qjs54av0moi7Qz2ZY0n6NHW0xXtDQDBjOyFEdh3i-36fk_eH-bTZPnl8fn2Z3z4mNjYek0mkFHEGlpZbSaF7WmkuAyliWKZbrXKIpdSk4r6HKJGQ2VQY5GqwsVFZMyfUud-37jxHDULRNsOic6TD2LTgXoHWeaxXRqz_oqh99F9tFSgqZMZ3mkYIdZX0fgse6WPumNX5TACu2roud6yK6Lrau4zIll_vksWyx-nnxLTcCfAeEOOoW6H-__j_1C7lviWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243470958</pqid></control><display><type>article</type><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</creator><creatorcontrib>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</creatorcontrib><description>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C
60
or C
70
) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.
Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C
60
and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0361-0</identifier><identifier>PMID: 31086318</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/1013 ; 639/301/357/341 ; 639/301/357/73 ; 639/301/923/3931 ; 639/638/911 ; Biomaterials ; Buckminsterfullerene ; Carbon monoxide ; Chemical bonds ; Chemisorption ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization ; Crystallography ; Crystals ; Diamond anvil cells ; Fullerenes ; High pressure ; High temperature ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Organic chemistry ; Porous materials ; Single crystals ; Stability</subject><ispartof>Nature materials, 2019-07, Vol.18 (7), p.740-745</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</citedby><cites>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</cites><orcidid>0000-0003-1326-0744 ; 0000-0002-8658-3897 ; 0000-0002-6027-261X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31086318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Burt, Luke A.</creatorcontrib><creatorcontrib>McMonagle, Charlie J.</creatorcontrib><creatorcontrib>Moggach, Stephen A.</creatorcontrib><creatorcontrib>Kariuki, Benson M.</creatorcontrib><creatorcontrib>Allan, David R.</creatorcontrib><creatorcontrib>Warren, Mark</creatorcontrib><creatorcontrib>McKeown, Neil B.</creatorcontrib><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C
60
or C
70
) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.
Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C
60
and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</description><subject>639/301/299/1013</subject><subject>639/301/357/341</subject><subject>639/301/357/73</subject><subject>639/301/923/3931</subject><subject>639/638/911</subject><subject>Biomaterials</subject><subject>Buckminsterfullerene</subject><subject>Carbon monoxide</subject><subject>Chemical bonds</subject><subject>Chemisorption</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diamond anvil cells</subject><subject>Fullerenes</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Porous materials</subject><subject>Single crystals</subject><subject>Stability</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoTqc_wIsEvHip5kvStDnKUCcoXvRc0vTr1pG2M2mR_XszNhUEL0nI9-TNy0PIBbAbYCK_DRJSJRIGOmFCQcIOyAnITCVSKXa4PwNwPiGnIawY45Cm6phMBLBcCchPyMu8WSzdhobBlA5pPTqHHjtMShOwouve92Ogbe_Qjs54av0moi7Qz2ZY0n6NHW0xXtDQDBjOyFEdh3i-36fk_eH-bTZPnl8fn2Z3z4mNjYek0mkFHEGlpZbSaF7WmkuAyliWKZbrXKIpdSk4r6HKJGQ2VQY5GqwsVFZMyfUud-37jxHDULRNsOic6TD2LTgXoHWeaxXRqz_oqh99F9tFSgqZMZ3mkYIdZX0fgse6WPumNX5TACu2roud6yK6Lrau4zIll_vksWyx-nnxLTcCfAeEOOoW6H-__j_1C7lviWQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bezzu, C. Grazia</creator><creator>Burt, Luke A.</creator><creator>McMonagle, Charlie J.</creator><creator>Moggach, Stephen A.</creator><creator>Kariuki, Benson M.</creator><creator>Allan, David R.</creator><creator>Warren, Mark</creator><creator>McKeown, Neil B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1326-0744</orcidid><orcidid>https://orcid.org/0000-0002-8658-3897</orcidid><orcidid>https://orcid.org/0000-0002-6027-261X</orcidid></search><sort><creationdate>20190701</creationdate><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><author>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/299/1013</topic><topic>639/301/357/341</topic><topic>639/301/357/73</topic><topic>639/301/923/3931</topic><topic>639/638/911</topic><topic>Biomaterials</topic><topic>Buckminsterfullerene</topic><topic>Carbon monoxide</topic><topic>Chemical bonds</topic><topic>Chemisorption</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diamond anvil cells</topic><topic>Fullerenes</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Porous materials</topic><topic>Single crystals</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Burt, Luke A.</creatorcontrib><creatorcontrib>McMonagle, Charlie J.</creatorcontrib><creatorcontrib>Moggach, Stephen A.</creatorcontrib><creatorcontrib>Kariuki, Benson M.</creatorcontrib><creatorcontrib>Allan, David R.</creatorcontrib><creatorcontrib>Warren, Mark</creatorcontrib><creatorcontrib>McKeown, Neil B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezzu, C. Grazia</au><au>Burt, Luke A.</au><au>McMonagle, Charlie J.</au><au>Moggach, Stephen A.</au><au>Kariuki, Benson M.</au><au>Allan, David R.</au><au>Warren, Mark</au><au>McKeown, Neil B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly stable fullerene-based porous molecular crystals with open metal sites</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>18</volume><issue>7</issue><spage>740</spage><epage>745</epage><pages>740-745</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C
60
or C
70
) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.
Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C
60
and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31086318</pmid><doi>10.1038/s41563-019-0361-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1326-0744</orcidid><orcidid>https://orcid.org/0000-0002-8658-3897</orcidid><orcidid>https://orcid.org/0000-0002-6027-261X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-07, Vol.18 (7), p.740-745 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231998896 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/299/1013 639/301/357/341 639/301/357/73 639/301/923/3931 639/638/911 Biomaterials Buckminsterfullerene Carbon monoxide Chemical bonds Chemisorption Chemistry and Materials Science Condensed Matter Physics Crystallization Crystallography Crystals Diamond anvil cells Fullerenes High pressure High temperature Materials Science Nanotechnology Optical and Electronic Materials Organic chemistry Porous materials Single crystals Stability |
title | Highly stable fullerene-based porous molecular crystals with open metal sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20stable%20fullerene-based%20porous%20molecular%20crystals%20with%20open%20metal%20sites&rft.jtitle=Nature%20materials&rft.au=Bezzu,%20C.%20Grazia&rft.date=2019-07-01&rft.volume=18&rft.issue=7&rft.spage=740&rft.epage=745&rft.pages=740-745&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0361-0&rft_dat=%3Cproquest_cross%3E2243470958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243470958&rft_id=info:pmid/31086318&rfr_iscdi=true |