Highly stable fullerene-based porous molecular crystals with open metal sites

The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same envir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-07, Vol.18 (7), p.740-745
Hauptverfasser: Bezzu, C. Grazia, Burt, Luke A., McMonagle, Charlie J., Moggach, Stephen A., Kariuki, Benson M., Allan, David R., Warren, Mark, McKeown, Neil B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 745
container_issue 7
container_start_page 740
container_title Nature materials
container_volume 18
creator Bezzu, C. Grazia
Burt, Luke A.
McMonagle, Charlie J.
Moggach, Stephen A.
Kariuki, Benson M.
Allan, David R.
Warren, Mark
McKeown, Neil B.
description The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C 60 or C 70 ) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions. Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C 60 and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.
doi_str_mv 10.1038/s41563-019-0361-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231998896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243470958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoTqc_wIsEvHip5kvStDnKUCcoXvRc0vTr1pG2M2mR_XszNhUEL0nI9-TNy0PIBbAbYCK_DRJSJRIGOmFCQcIOyAnITCVSKXa4PwNwPiGnIawY45Cm6phMBLBcCchPyMu8WSzdhobBlA5pPTqHHjtMShOwouve92Ogbe_Qjs54av0moi7Qz2ZY0n6NHW0xXtDQDBjOyFEdh3i-36fk_eH-bTZPnl8fn2Z3z4mNjYek0mkFHEGlpZbSaF7WmkuAyliWKZbrXKIpdSk4r6HKJGQ2VQY5GqwsVFZMyfUud-37jxHDULRNsOic6TD2LTgXoHWeaxXRqz_oqh99F9tFSgqZMZ3mkYIdZX0fgse6WPumNX5TACu2roud6yK6Lrau4zIll_vksWyx-nnxLTcCfAeEOOoW6H-__j_1C7lviWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243470958</pqid></control><display><type>article</type><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</creator><creatorcontrib>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</creatorcontrib><description>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C 60 or C 70 ) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (&gt;4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions. Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C 60 and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0361-0</identifier><identifier>PMID: 31086318</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/1013 ; 639/301/357/341 ; 639/301/357/73 ; 639/301/923/3931 ; 639/638/911 ; Biomaterials ; Buckminsterfullerene ; Carbon monoxide ; Chemical bonds ; Chemisorption ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization ; Crystallography ; Crystals ; Diamond anvil cells ; Fullerenes ; High pressure ; High temperature ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Organic chemistry ; Porous materials ; Single crystals ; Stability</subject><ispartof>Nature materials, 2019-07, Vol.18 (7), p.740-745</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</citedby><cites>FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</cites><orcidid>0000-0003-1326-0744 ; 0000-0002-8658-3897 ; 0000-0002-6027-261X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31086318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Burt, Luke A.</creatorcontrib><creatorcontrib>McMonagle, Charlie J.</creatorcontrib><creatorcontrib>Moggach, Stephen A.</creatorcontrib><creatorcontrib>Kariuki, Benson M.</creatorcontrib><creatorcontrib>Allan, David R.</creatorcontrib><creatorcontrib>Warren, Mark</creatorcontrib><creatorcontrib>McKeown, Neil B.</creatorcontrib><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C 60 or C 70 ) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (&gt;4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions. Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C 60 and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</description><subject>639/301/299/1013</subject><subject>639/301/357/341</subject><subject>639/301/357/73</subject><subject>639/301/923/3931</subject><subject>639/638/911</subject><subject>Biomaterials</subject><subject>Buckminsterfullerene</subject><subject>Carbon monoxide</subject><subject>Chemical bonds</subject><subject>Chemisorption</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diamond anvil cells</subject><subject>Fullerenes</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Porous materials</subject><subject>Single crystals</subject><subject>Stability</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMoTqc_wIsEvHip5kvStDnKUCcoXvRc0vTr1pG2M2mR_XszNhUEL0nI9-TNy0PIBbAbYCK_DRJSJRIGOmFCQcIOyAnITCVSKXa4PwNwPiGnIawY45Cm6phMBLBcCchPyMu8WSzdhobBlA5pPTqHHjtMShOwouve92Ogbe_Qjs54av0moi7Qz2ZY0n6NHW0xXtDQDBjOyFEdh3i-36fk_eH-bTZPnl8fn2Z3z4mNjYek0mkFHEGlpZbSaF7WmkuAyliWKZbrXKIpdSk4r6HKJGQ2VQY5GqwsVFZMyfUud-37jxHDULRNsOic6TD2LTgXoHWeaxXRqz_oqh99F9tFSgqZMZ3mkYIdZX0fgse6WPumNX5TACu2roud6yK6Lrau4zIll_vksWyx-nnxLTcCfAeEOOoW6H-__j_1C7lviWQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bezzu, C. Grazia</creator><creator>Burt, Luke A.</creator><creator>McMonagle, Charlie J.</creator><creator>Moggach, Stephen A.</creator><creator>Kariuki, Benson M.</creator><creator>Allan, David R.</creator><creator>Warren, Mark</creator><creator>McKeown, Neil B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1326-0744</orcidid><orcidid>https://orcid.org/0000-0002-8658-3897</orcidid><orcidid>https://orcid.org/0000-0002-6027-261X</orcidid></search><sort><creationdate>20190701</creationdate><title>Highly stable fullerene-based porous molecular crystals with open metal sites</title><author>Bezzu, C. Grazia ; Burt, Luke A. ; McMonagle, Charlie J. ; Moggach, Stephen A. ; Kariuki, Benson M. ; Allan, David R. ; Warren, Mark ; McKeown, Neil B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d95d12e165b944a92bf92411dac07608984eab9b322f1d7417c56ae2eaedc1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/299/1013</topic><topic>639/301/357/341</topic><topic>639/301/357/73</topic><topic>639/301/923/3931</topic><topic>639/638/911</topic><topic>Biomaterials</topic><topic>Buckminsterfullerene</topic><topic>Carbon monoxide</topic><topic>Chemical bonds</topic><topic>Chemisorption</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diamond anvil cells</topic><topic>Fullerenes</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Porous materials</topic><topic>Single crystals</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezzu, C. Grazia</creatorcontrib><creatorcontrib>Burt, Luke A.</creatorcontrib><creatorcontrib>McMonagle, Charlie J.</creatorcontrib><creatorcontrib>Moggach, Stephen A.</creatorcontrib><creatorcontrib>Kariuki, Benson M.</creatorcontrib><creatorcontrib>Allan, David R.</creatorcontrib><creatorcontrib>Warren, Mark</creatorcontrib><creatorcontrib>McKeown, Neil B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezzu, C. Grazia</au><au>Burt, Luke A.</au><au>McMonagle, Charlie J.</au><au>Moggach, Stephen A.</au><au>Kariuki, Benson M.</au><au>Allan, David R.</au><au>Warren, Mark</au><au>McKeown, Neil B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly stable fullerene-based porous molecular crystals with open metal sites</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>18</volume><issue>7</issue><spage>740</spage><epage>745</epage><pages>740-745</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C 60 or C 70 ) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (&gt;4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions. Porous molecular crystals are easy to fabricate but thought to have limited stability as they are bound by non-covalent interactions. Here, a porous crystal composed of C 60 and phthalocyanine is demonstrated with stability to heat, acid, base and high pressures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31086318</pmid><doi>10.1038/s41563-019-0361-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1326-0744</orcidid><orcidid>https://orcid.org/0000-0002-8658-3897</orcidid><orcidid>https://orcid.org/0000-0002-6027-261X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-07, Vol.18 (7), p.740-745
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2231998896
source Nature; Alma/SFX Local Collection
subjects 639/301/299/1013
639/301/357/341
639/301/357/73
639/301/923/3931
639/638/911
Biomaterials
Buckminsterfullerene
Carbon monoxide
Chemical bonds
Chemisorption
Chemistry and Materials Science
Condensed Matter Physics
Crystallization
Crystallography
Crystals
Diamond anvil cells
Fullerenes
High pressure
High temperature
Materials Science
Nanotechnology
Optical and Electronic Materials
Organic chemistry
Porous materials
Single crystals
Stability
title Highly stable fullerene-based porous molecular crystals with open metal sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20stable%20fullerene-based%20porous%20molecular%20crystals%20with%20open%20metal%20sites&rft.jtitle=Nature%20materials&rft.au=Bezzu,%20C.%20Grazia&rft.date=2019-07-01&rft.volume=18&rft.issue=7&rft.spage=740&rft.epage=745&rft.pages=740-745&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0361-0&rft_dat=%3Cproquest_cross%3E2243470958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243470958&rft_id=info:pmid/31086318&rfr_iscdi=true