Toward computer-made artificial antibiotics

[Display omitted] •Computational tools for the guided design of novel antibiotics.•The importance of biological descriptors and computational biology for the development of enhanced drugs.•Peptide-based molecules represent promising approach to combat multidrug-resistant microorganisms. Merging conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in microbiology 2019-10, Vol.51, p.30-38
Hauptverfasser: Torres, Marcelo Der Torossian, de la Fuente-Nunez, Cesar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 30
container_title Current opinion in microbiology
container_volume 51
creator Torres, Marcelo Der Torossian
de la Fuente-Nunez, Cesar
description [Display omitted] •Computational tools for the guided design of novel antibiotics.•The importance of biological descriptors and computational biology for the development of enhanced drugs.•Peptide-based molecules represent promising approach to combat multidrug-resistant microorganisms. Merging concepts from synthetic biology and computational biology may yield antibiotics that are less likely to elicit resistance than existing drugs and that yet can fight drug-resistant infections. Indeed, computer-guided strategies coupled with massively parallel high-throughput experimental methods represent a new paradigm for antibiotic discovery. Infections caused by multidrug-resistant microorganisms are increasingly deadly. In the current post-antibiotic era, many of these infections cannot be treated with our existing antimicrobial arsenal. Furthermore, we may have already exhausted the category of large molecules produced in nature having antimicrobial activity: the antibiotic scaffolds we have discovered so far may represent the majority of those that exist. The rise in drug-resistant bacteria and lack of new antibiotic classes clearly call for out-of-the-box strategies. Recent advances in computational synthetic biology have enabled the development of antimicrobials. New molecular descriptors and genetic and pattern recognition algorithms are powerful tools that bring us a step closer to developing efficient antibiotics. We review several computational tools for drug design and a number of recently generated antibiotic candidates, with an emphasis on peptide-based molecules. Design strategies can generate a diversity of synthetic antimicrobial peptides, which may help to mitigate the spread of resistance and combat multidrug-resistant microorganisms.
doi_str_mv 10.1016/j.mib.2019.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231989379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369527419300050</els_id><sourcerecordid>2231989379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-fbbc285ac4d57b1774483b53334eee3a599f46c8a7df036fd30a54149870c0303</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfpUZBdk51ks8GTFL-g4KWeQz5mIaXbrcmu4r830urR08zheV9mHkIuGS0ZZfXtuuyCLSvKVEmhpJQfkSlrpCoo1Pw471CrQlSST8hZSmuaCSXqUzIBRpuqrtmU3Kz6TxP93PXdbhwwFp3xODdxCG1wwWzmZjsEG_ohuHROTlqzSXhxmDPy9viwWjwXy9enl8X9snAgYChaa13VCOO4F9IyKTlvwAoA4IgIRijV8to1Rvo2H9p6oEZwxlUjqaNAYUau97272L-PmAbdheRwszFb7MekqwqYahRIlVG2R13sU4rY6l0MnYlfmlH940ivc9jqH0eags4GcubqUD_aDv1f4ldKBu72AOYnPwJGnVzArUMfIrpB-z78U_8NqA51lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231989379</pqid></control><display><type>article</type><title>Toward computer-made artificial antibiotics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar</creator><creatorcontrib>Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar</creatorcontrib><description>[Display omitted] •Computational tools for the guided design of novel antibiotics.•The importance of biological descriptors and computational biology for the development of enhanced drugs.•Peptide-based molecules represent promising approach to combat multidrug-resistant microorganisms. Merging concepts from synthetic biology and computational biology may yield antibiotics that are less likely to elicit resistance than existing drugs and that yet can fight drug-resistant infections. Indeed, computer-guided strategies coupled with massively parallel high-throughput experimental methods represent a new paradigm for antibiotic discovery. Infections caused by multidrug-resistant microorganisms are increasingly deadly. In the current post-antibiotic era, many of these infections cannot be treated with our existing antimicrobial arsenal. Furthermore, we may have already exhausted the category of large molecules produced in nature having antimicrobial activity: the antibiotic scaffolds we have discovered so far may represent the majority of those that exist. The rise in drug-resistant bacteria and lack of new antibiotic classes clearly call for out-of-the-box strategies. Recent advances in computational synthetic biology have enabled the development of antimicrobials. New molecular descriptors and genetic and pattern recognition algorithms are powerful tools that bring us a step closer to developing efficient antibiotics. We review several computational tools for drug design and a number of recently generated antibiotic candidates, with an emphasis on peptide-based molecules. Design strategies can generate a diversity of synthetic antimicrobial peptides, which may help to mitigate the spread of resistance and combat multidrug-resistant microorganisms.</description><identifier>ISSN: 1369-5274</identifier><identifier>EISSN: 1879-0364</identifier><identifier>DOI: 10.1016/j.mib.2019.03.004</identifier><identifier>PMID: 31082661</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><ispartof>Current opinion in microbiology, 2019-10, Vol.51, p.30-38</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-fbbc285ac4d57b1774483b53334eee3a599f46c8a7df036fd30a54149870c0303</citedby><cites>FETCH-LOGICAL-c353t-fbbc285ac4d57b1774483b53334eee3a599f46c8a7df036fd30a54149870c0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mib.2019.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31082661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><title>Toward computer-made artificial antibiotics</title><title>Current opinion in microbiology</title><addtitle>Curr Opin Microbiol</addtitle><description>[Display omitted] •Computational tools for the guided design of novel antibiotics.•The importance of biological descriptors and computational biology for the development of enhanced drugs.•Peptide-based molecules represent promising approach to combat multidrug-resistant microorganisms. Merging concepts from synthetic biology and computational biology may yield antibiotics that are less likely to elicit resistance than existing drugs and that yet can fight drug-resistant infections. Indeed, computer-guided strategies coupled with massively parallel high-throughput experimental methods represent a new paradigm for antibiotic discovery. Infections caused by multidrug-resistant microorganisms are increasingly deadly. In the current post-antibiotic era, many of these infections cannot be treated with our existing antimicrobial arsenal. Furthermore, we may have already exhausted the category of large molecules produced in nature having antimicrobial activity: the antibiotic scaffolds we have discovered so far may represent the majority of those that exist. The rise in drug-resistant bacteria and lack of new antibiotic classes clearly call for out-of-the-box strategies. Recent advances in computational synthetic biology have enabled the development of antimicrobials. New molecular descriptors and genetic and pattern recognition algorithms are powerful tools that bring us a step closer to developing efficient antibiotics. We review several computational tools for drug design and a number of recently generated antibiotic candidates, with an emphasis on peptide-based molecules. Design strategies can generate a diversity of synthetic antimicrobial peptides, which may help to mitigate the spread of resistance and combat multidrug-resistant microorganisms.</description><issn>1369-5274</issn><issn>1879-0364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gBfpUZBdk51ks8GTFL-g4KWeQz5mIaXbrcmu4r830urR08zheV9mHkIuGS0ZZfXtuuyCLSvKVEmhpJQfkSlrpCoo1Pw471CrQlSST8hZSmuaCSXqUzIBRpuqrtmU3Kz6TxP93PXdbhwwFp3xODdxCG1wwWzmZjsEG_ohuHROTlqzSXhxmDPy9viwWjwXy9enl8X9snAgYChaa13VCOO4F9IyKTlvwAoA4IgIRijV8to1Rvo2H9p6oEZwxlUjqaNAYUau97272L-PmAbdheRwszFb7MekqwqYahRIlVG2R13sU4rY6l0MnYlfmlH940ivc9jqH0eags4GcubqUD_aDv1f4ldKBu72AOYnPwJGnVzArUMfIrpB-z78U_8NqA51lw</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Torres, Marcelo Der Torossian</creator><creator>de la Fuente-Nunez, Cesar</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Toward computer-made artificial antibiotics</title><author>Torres, Marcelo Der Torossian ; de la Fuente-Nunez, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-fbbc285ac4d57b1774483b53334eee3a599f46c8a7df036fd30a54149870c0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres, Marcelo Der Torossian</creatorcontrib><creatorcontrib>de la Fuente-Nunez, Cesar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Marcelo Der Torossian</au><au>de la Fuente-Nunez, Cesar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward computer-made artificial antibiotics</atitle><jtitle>Current opinion in microbiology</jtitle><addtitle>Curr Opin Microbiol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>51</volume><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>1369-5274</issn><eissn>1879-0364</eissn><abstract>[Display omitted] •Computational tools for the guided design of novel antibiotics.•The importance of biological descriptors and computational biology for the development of enhanced drugs.•Peptide-based molecules represent promising approach to combat multidrug-resistant microorganisms. Merging concepts from synthetic biology and computational biology may yield antibiotics that are less likely to elicit resistance than existing drugs and that yet can fight drug-resistant infections. Indeed, computer-guided strategies coupled with massively parallel high-throughput experimental methods represent a new paradigm for antibiotic discovery. Infections caused by multidrug-resistant microorganisms are increasingly deadly. In the current post-antibiotic era, many of these infections cannot be treated with our existing antimicrobial arsenal. Furthermore, we may have already exhausted the category of large molecules produced in nature having antimicrobial activity: the antibiotic scaffolds we have discovered so far may represent the majority of those that exist. The rise in drug-resistant bacteria and lack of new antibiotic classes clearly call for out-of-the-box strategies. Recent advances in computational synthetic biology have enabled the development of antimicrobials. New molecular descriptors and genetic and pattern recognition algorithms are powerful tools that bring us a step closer to developing efficient antibiotics. We review several computational tools for drug design and a number of recently generated antibiotic candidates, with an emphasis on peptide-based molecules. Design strategies can generate a diversity of synthetic antimicrobial peptides, which may help to mitigate the spread of resistance and combat multidrug-resistant microorganisms.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31082661</pmid><doi>10.1016/j.mib.2019.03.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-5274
ispartof Current opinion in microbiology, 2019-10, Vol.51, p.30-38
issn 1369-5274
1879-0364
language eng
recordid cdi_proquest_miscellaneous_2231989379
source Access via ScienceDirect (Elsevier)
title Toward computer-made artificial antibiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20computer-made%20artificial%20antibiotics&rft.jtitle=Current%20opinion%20in%20microbiology&rft.au=Torres,%20Marcelo%20Der%20Torossian&rft.date=2019-10&rft.volume=51&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=1369-5274&rft.eissn=1879-0364&rft_id=info:doi/10.1016/j.mib.2019.03.004&rft_dat=%3Cproquest_cross%3E2231989379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231989379&rft_id=info:pmid/31082661&rft_els_id=S1369527419300050&rfr_iscdi=true