Putting machine learning into motion: applications in cardiovascular imaging

Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understandi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical radiology 2020-01, Vol.75 (1), p.33-37
1. Verfasser: O'Regan, D.P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 33
container_title Clinical radiology
container_volume 75
creator O'Regan, D.P.
description Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understanding and quantifying normal physiology and disease processes. Conventional image interpretation relies on manual analysis but this often fails to capture important prognostic features in the complex disturbances of cardiovascular physiology. Machine learning (ML) in cardiovascular imaging promises to be a transformative tool and addresses an unmet need for patient-specific management, accurate prediction of future events, and the discovery of tractable molecular mechanisms of disease. This review discusses the potential of ML across every aspect of image analysis including efficient acquisition, segmentation and motion tracking, disease classification, prediction tasks and modelling of genotype–phenotype interactions; however, significant challenges remain in access to high-quality data at scale, robust validation, and clinical interpretability.
doi_str_mv 10.1016/j.crad.2019.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231963843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009926019301953</els_id><sourcerecordid>2231963843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7b8c534e27f226f63ea4e9163cac8588e871e32feb93353495c6dd3119187b833</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOo7-ARfSpZvWfDVtxI0MfsGALhTchUz6OmZom5q0A_57U2Z06Sq85NzLy0HoguCMYCKuN5nxusooJjLDPMO4PEAzwkSeUio_DtEMYyxTSQU-QachbKaRU36MThjBhZQ5naHl6zgMtlsnrTaftoOkAe276cJ2g0taN1jX3SS67xtr9DSE-JIY7SvrtjqYsdE-sa1ex8wZOqp1E-B8f87R-8P92-IpXb48Pi_ulqnhGA9psSpNzjjQoqZU1IKB5iCJYEabMi9LKAsCjNawkoxFUOZGVBUjRJIyZhmbo6tdb-_d1whhUK0NBppGd-DGoChlRApW8gmlO9R4F4KHWvU-buu_FcFqsqg2arKoJosKcxUtxtDlvn9ctVD9RX61ReB2B0D85daCV8FY6AxU1oMZVOXsf_0_geaDLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231963843</pqid></control><display><type>article</type><title>Putting machine learning into motion: applications in cardiovascular imaging</title><source>Elsevier ScienceDirect Journals Complete</source><creator>O'Regan, D.P.</creator><creatorcontrib>O'Regan, D.P.</creatorcontrib><description>Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understanding and quantifying normal physiology and disease processes. Conventional image interpretation relies on manual analysis but this often fails to capture important prognostic features in the complex disturbances of cardiovascular physiology. Machine learning (ML) in cardiovascular imaging promises to be a transformative tool and addresses an unmet need for patient-specific management, accurate prediction of future events, and the discovery of tractable molecular mechanisms of disease. This review discusses the potential of ML across every aspect of image analysis including efficient acquisition, segmentation and motion tracking, disease classification, prediction tasks and modelling of genotype–phenotype interactions; however, significant challenges remain in access to high-quality data at scale, robust validation, and clinical interpretability.</description><identifier>ISSN: 0009-9260</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2019.04.008</identifier><identifier>PMID: 31079952</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><ispartof>Clinical radiology, 2020-01, Vol.75 (1), p.33-37</ispartof><rights>2019 The Royal College of Radiologists</rights><rights>Copyright © 2019 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7b8c534e27f226f63ea4e9163cac8588e871e32feb93353495c6dd3119187b833</citedby><cites>FETCH-LOGICAL-c400t-7b8c534e27f226f63ea4e9163cac8588e871e32feb93353495c6dd3119187b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crad.2019.04.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31079952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Regan, D.P.</creatorcontrib><title>Putting machine learning into motion: applications in cardiovascular imaging</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understanding and quantifying normal physiology and disease processes. Conventional image interpretation relies on manual analysis but this often fails to capture important prognostic features in the complex disturbances of cardiovascular physiology. Machine learning (ML) in cardiovascular imaging promises to be a transformative tool and addresses an unmet need for patient-specific management, accurate prediction of future events, and the discovery of tractable molecular mechanisms of disease. This review discusses the potential of ML across every aspect of image analysis including efficient acquisition, segmentation and motion tracking, disease classification, prediction tasks and modelling of genotype–phenotype interactions; however, significant challenges remain in access to high-quality data at scale, robust validation, and clinical interpretability.</description><issn>0009-9260</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOo7-ARfSpZvWfDVtxI0MfsGALhTchUz6OmZom5q0A_57U2Z06Sq85NzLy0HoguCMYCKuN5nxusooJjLDPMO4PEAzwkSeUio_DtEMYyxTSQU-QachbKaRU36MThjBhZQ5naHl6zgMtlsnrTaftoOkAe276cJ2g0taN1jX3SS67xtr9DSE-JIY7SvrtjqYsdE-sa1ex8wZOqp1E-B8f87R-8P92-IpXb48Pi_ulqnhGA9psSpNzjjQoqZU1IKB5iCJYEabMi9LKAsCjNawkoxFUOZGVBUjRJIyZhmbo6tdb-_d1whhUK0NBppGd-DGoChlRApW8gmlO9R4F4KHWvU-buu_FcFqsqg2arKoJosKcxUtxtDlvn9ctVD9RX61ReB2B0D85daCV8FY6AxU1oMZVOXsf_0_geaDLQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>O'Regan, D.P.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>Putting machine learning into motion: applications in cardiovascular imaging</title><author>O'Regan, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7b8c534e27f226f63ea4e9163cac8588e871e32feb93353495c6dd3119187b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Regan, D.P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Regan, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putting machine learning into motion: applications in cardiovascular imaging</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>75</volume><issue>1</issue><spage>33</spage><epage>37</epage><pages>33-37</pages><issn>0009-9260</issn><eissn>1365-229X</eissn><abstract>Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understanding and quantifying normal physiology and disease processes. Conventional image interpretation relies on manual analysis but this often fails to capture important prognostic features in the complex disturbances of cardiovascular physiology. Machine learning (ML) in cardiovascular imaging promises to be a transformative tool and addresses an unmet need for patient-specific management, accurate prediction of future events, and the discovery of tractable molecular mechanisms of disease. This review discusses the potential of ML across every aspect of image analysis including efficient acquisition, segmentation and motion tracking, disease classification, prediction tasks and modelling of genotype–phenotype interactions; however, significant challenges remain in access to high-quality data at scale, robust validation, and clinical interpretability.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31079952</pmid><doi>10.1016/j.crad.2019.04.008</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9260
ispartof Clinical radiology, 2020-01, Vol.75 (1), p.33-37
issn 0009-9260
1365-229X
language eng
recordid cdi_proquest_miscellaneous_2231963843
source Elsevier ScienceDirect Journals Complete
title Putting machine learning into motion: applications in cardiovascular imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putting%20machine%20learning%20into%20motion:%20applications%20in%20cardiovascular%20imaging&rft.jtitle=Clinical%20radiology&rft.au=O'Regan,%20D.P.&rft.date=2020-01&rft.volume=75&rft.issue=1&rft.spage=33&rft.epage=37&rft.pages=33-37&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2019.04.008&rft_dat=%3Cproquest_cross%3E2231963843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231963843&rft_id=info:pmid/31079952&rft_els_id=S0009926019301953&rfr_iscdi=true