Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2
Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon sour...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2019-05, Vol.26 (3), p.899-905 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 3 |
container_start_page | 899 |
container_title | Journal of synchrotron radiation |
container_volume | 26 |
creator | Ruiz-Lopez, Mabel Samoylova, Liubov Brenner, Günter Mehrjoo, Masoud Faatz, Bart Kuhlmann, Marion Poletto, Luca Plönjes, Elke |
description | Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined.
The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required. |
doi_str_mv | 10.1107/S160057751900345X |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231947268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231947268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxi3Uin_lAbhUlnrpZan_xHZyRKiUopVQtVSlp8hxJotRbKd2AtpbH4Fn7JPgZQFV9NDTjEa_79PMfAgdUnJEKVGfFlQSIpQStCKEF-JqC-2uR7P17M1f_Q7aS-mGECoV49toh2d1UQixi1Y_9C10Mfjxz-_7IYZBL_Vog8fJuql_bBNO0zCEOFq_xOM14BaSXXocOqzxaB1kZQu9XmET3AA-6UfSBR_MdQxOjyHiBrTrrQesR3w6P16csXfobaf7BAdPdR99P_18eXI2m198-XpyPJ-ZgrFyppQkUmnZVtCYwkAjCuCiEISQstQUGNFd21ZdKSpSNaar8h8oUEkZJ4prw_fRx41vvu7XBGmsnU0G-l57CFOqGeO0KhSTZUY_vEJvwhR93i5TjEkuJaWZohvKxJBShK4eonU6rmpK6nUu9T-5ZM37J-epcdC-KJ6DyEC1Ae5sD6v_O9bni5_s6lt-Q8kfABkNm1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222636611</pqid></control><display><type>article</type><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><source>Wiley Online Library (Open Access Collection)</source><creator>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</creator><creatorcontrib>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</creatorcontrib><description>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined.
The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S160057751900345X</identifier><identifier>PMID: 31074455</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>diffraction gratings ; free‐electron lasers ; Laser beams ; Mathematical analysis ; Misalignment ; monochromators ; Optical components ; Propagation ; Simulation ; Tolerances ; ultrafast optics ; Wave propagation ; wavefront propagation ; wavefront simulations</subject><ispartof>Journal of synchrotron radiation, 2019-05, Vol.26 (3), p.899-905</ispartof><rights>Mabel Ruiz-Lopez et al. 2019</rights><rights>Copyright Wiley Subscription Services, Inc. May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</citedby><cites>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS160057751900345X$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS160057751900345X$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS160057751900345X$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31074455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Lopez, Mabel</creatorcontrib><creatorcontrib>Samoylova, Liubov</creatorcontrib><creatorcontrib>Brenner, Günter</creatorcontrib><creatorcontrib>Mehrjoo, Masoud</creatorcontrib><creatorcontrib>Faatz, Bart</creatorcontrib><creatorcontrib>Kuhlmann, Marion</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>Plönjes, Elke</creatorcontrib><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined.
The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</description><subject>diffraction gratings</subject><subject>free‐electron lasers</subject><subject>Laser beams</subject><subject>Mathematical analysis</subject><subject>Misalignment</subject><subject>monochromators</subject><subject>Optical components</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Tolerances</subject><subject>ultrafast optics</subject><subject>Wave propagation</subject><subject>wavefront propagation</subject><subject>wavefront simulations</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQxi3Uin_lAbhUlnrpZan_xHZyRKiUopVQtVSlp8hxJotRbKd2AtpbH4Fn7JPgZQFV9NDTjEa_79PMfAgdUnJEKVGfFlQSIpQStCKEF-JqC-2uR7P17M1f_Q7aS-mGECoV49toh2d1UQixi1Y_9C10Mfjxz-_7IYZBL_Vog8fJuql_bBNO0zCEOFq_xOM14BaSXXocOqzxaB1kZQu9XmET3AA-6UfSBR_MdQxOjyHiBrTrrQesR3w6P16csXfobaf7BAdPdR99P_18eXI2m198-XpyPJ-ZgrFyppQkUmnZVtCYwkAjCuCiEISQstQUGNFd21ZdKSpSNaar8h8oUEkZJ4prw_fRx41vvu7XBGmsnU0G-l57CFOqGeO0KhSTZUY_vEJvwhR93i5TjEkuJaWZohvKxJBShK4eonU6rmpK6nUu9T-5ZM37J-epcdC-KJ6DyEC1Ae5sD6v_O9bni5_s6lt-Q8kfABkNm1M</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Ruiz-Lopez, Mabel</creator><creator>Samoylova, Liubov</creator><creator>Brenner, Günter</creator><creator>Mehrjoo, Masoud</creator><creator>Faatz, Bart</creator><creator>Kuhlmann, Marion</creator><creator>Poletto, Luca</creator><creator>Plönjes, Elke</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><author>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>diffraction gratings</topic><topic>free‐electron lasers</topic><topic>Laser beams</topic><topic>Mathematical analysis</topic><topic>Misalignment</topic><topic>monochromators</topic><topic>Optical components</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Tolerances</topic><topic>ultrafast optics</topic><topic>Wave propagation</topic><topic>wavefront propagation</topic><topic>wavefront simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Lopez, Mabel</creatorcontrib><creatorcontrib>Samoylova, Liubov</creatorcontrib><creatorcontrib>Brenner, Günter</creatorcontrib><creatorcontrib>Mehrjoo, Masoud</creatorcontrib><creatorcontrib>Faatz, Bart</creatorcontrib><creatorcontrib>Kuhlmann, Marion</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>Plönjes, Elke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Lopez, Mabel</au><au>Samoylova, Liubov</au><au>Brenner, Günter</au><au>Mehrjoo, Masoud</au><au>Faatz, Bart</au><au>Kuhlmann, Marion</au><au>Poletto, Luca</au><au>Plönjes, Elke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-05</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>899</spage><epage>905</epage><pages>899-905</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined.
The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31074455</pmid><doi>10.1107/S160057751900345X</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2019-05, Vol.26 (3), p.899-905 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231947268 |
source | Wiley Online Library (Open Access Collection) |
subjects | diffraction gratings free‐electron lasers Laser beams Mathematical analysis Misalignment monochromators Optical components Propagation Simulation Tolerances ultrafast optics Wave propagation wavefront propagation wavefront simulations |
title | Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%E2%80%90propagation%20simulations%20supporting%20the%20design%20of%20a%20time%E2%80%90delay%20compensating%20monochromator%20beamline%20at%20FLASH2&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Ruiz-Lopez,%20Mabel&rft.date=2019-05&rft.volume=26&rft.issue=3&rft.spage=899&rft.epage=905&rft.pages=899-905&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S160057751900345X&rft_dat=%3Cproquest_24P%3E2231947268%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222636611&rft_id=info:pmid/31074455&rfr_iscdi=true |