Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2

Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon sour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2019-05, Vol.26 (3), p.899-905
Hauptverfasser: Ruiz-Lopez, Mabel, Samoylova, Liubov, Brenner, Günter, Mehrjoo, Masoud, Faatz, Bart, Kuhlmann, Marion, Poletto, Luca, Plönjes, Elke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 3
container_start_page 899
container_title Journal of synchrotron radiation
container_volume 26
creator Ruiz-Lopez, Mabel
Samoylova, Liubov
Brenner, Günter
Mehrjoo, Masoud
Faatz, Bart
Kuhlmann, Marion
Poletto, Luca
Plönjes, Elke
description Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined. The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.
doi_str_mv 10.1107/S160057751900345X
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231947268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231947268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxi3Uin_lAbhUlnrpZan_xHZyRKiUopVQtVSlp8hxJotRbKd2AtpbH4Fn7JPgZQFV9NDTjEa_79PMfAgdUnJEKVGfFlQSIpQStCKEF-JqC-2uR7P17M1f_Q7aS-mGECoV49toh2d1UQixi1Y_9C10Mfjxz-_7IYZBL_Vog8fJuql_bBNO0zCEOFq_xOM14BaSXXocOqzxaB1kZQu9XmET3AA-6UfSBR_MdQxOjyHiBrTrrQesR3w6P16csXfobaf7BAdPdR99P_18eXI2m198-XpyPJ-ZgrFyppQkUmnZVtCYwkAjCuCiEISQstQUGNFd21ZdKSpSNaar8h8oUEkZJ4prw_fRx41vvu7XBGmsnU0G-l57CFOqGeO0KhSTZUY_vEJvwhR93i5TjEkuJaWZohvKxJBShK4eonU6rmpK6nUu9T-5ZM37J-epcdC-KJ6DyEC1Ae5sD6v_O9bni5_s6lt-Q8kfABkNm1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222636611</pqid></control><display><type>article</type><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><source>Wiley Online Library (Open Access Collection)</source><creator>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</creator><creatorcontrib>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</creatorcontrib><description>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined. The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S160057751900345X</identifier><identifier>PMID: 31074455</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>diffraction gratings ; free‐electron lasers ; Laser beams ; Mathematical analysis ; Misalignment ; monochromators ; Optical components ; Propagation ; Simulation ; Tolerances ; ultrafast optics ; Wave propagation ; wavefront propagation ; wavefront simulations</subject><ispartof>Journal of synchrotron radiation, 2019-05, Vol.26 (3), p.899-905</ispartof><rights>Mabel Ruiz-Lopez et al. 2019</rights><rights>Copyright Wiley Subscription Services, Inc. May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</citedby><cites>FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS160057751900345X$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS160057751900345X$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS160057751900345X$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31074455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Lopez, Mabel</creatorcontrib><creatorcontrib>Samoylova, Liubov</creatorcontrib><creatorcontrib>Brenner, Günter</creatorcontrib><creatorcontrib>Mehrjoo, Masoud</creatorcontrib><creatorcontrib>Faatz, Bart</creatorcontrib><creatorcontrib>Kuhlmann, Marion</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>Plönjes, Elke</creatorcontrib><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined. The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</description><subject>diffraction gratings</subject><subject>free‐electron lasers</subject><subject>Laser beams</subject><subject>Mathematical analysis</subject><subject>Misalignment</subject><subject>monochromators</subject><subject>Optical components</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Tolerances</subject><subject>ultrafast optics</subject><subject>Wave propagation</subject><subject>wavefront propagation</subject><subject>wavefront simulations</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQxi3Uin_lAbhUlnrpZan_xHZyRKiUopVQtVSlp8hxJotRbKd2AtpbH4Fn7JPgZQFV9NDTjEa_79PMfAgdUnJEKVGfFlQSIpQStCKEF-JqC-2uR7P17M1f_Q7aS-mGECoV49toh2d1UQixi1Y_9C10Mfjxz-_7IYZBL_Vog8fJuql_bBNO0zCEOFq_xOM14BaSXXocOqzxaB1kZQu9XmET3AA-6UfSBR_MdQxOjyHiBrTrrQesR3w6P16csXfobaf7BAdPdR99P_18eXI2m198-XpyPJ-ZgrFyppQkUmnZVtCYwkAjCuCiEISQstQUGNFd21ZdKSpSNaar8h8oUEkZJ4prw_fRx41vvu7XBGmsnU0G-l57CFOqGeO0KhSTZUY_vEJvwhR93i5TjEkuJaWZohvKxJBShK4eonU6rmpK6nUu9T-5ZM37J-epcdC-KJ6DyEC1Ae5sD6v_O9bni5_s6lt-Q8kfABkNm1M</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Ruiz-Lopez, Mabel</creator><creator>Samoylova, Liubov</creator><creator>Brenner, Günter</creator><creator>Mehrjoo, Masoud</creator><creator>Faatz, Bart</creator><creator>Kuhlmann, Marion</creator><creator>Poletto, Luca</creator><creator>Plönjes, Elke</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</title><author>Ruiz-Lopez, Mabel ; Samoylova, Liubov ; Brenner, Günter ; Mehrjoo, Masoud ; Faatz, Bart ; Kuhlmann, Marion ; Poletto, Luca ; Plönjes, Elke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4228-776067a6d9ebc4ceb54e354500088a1e20afdd9f85909bcf93451e16123073ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>diffraction gratings</topic><topic>free‐electron lasers</topic><topic>Laser beams</topic><topic>Mathematical analysis</topic><topic>Misalignment</topic><topic>monochromators</topic><topic>Optical components</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Tolerances</topic><topic>ultrafast optics</topic><topic>Wave propagation</topic><topic>wavefront propagation</topic><topic>wavefront simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Lopez, Mabel</creatorcontrib><creatorcontrib>Samoylova, Liubov</creatorcontrib><creatorcontrib>Brenner, Günter</creatorcontrib><creatorcontrib>Mehrjoo, Masoud</creatorcontrib><creatorcontrib>Faatz, Bart</creatorcontrib><creatorcontrib>Kuhlmann, Marion</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>Plönjes, Elke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Lopez, Mabel</au><au>Samoylova, Liubov</au><au>Brenner, Günter</au><au>Mehrjoo, Masoud</au><au>Faatz, Bart</au><au>Kuhlmann, Marion</au><au>Poletto, Luca</au><au>Plönjes, Elke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-05</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><spage>899</spage><epage>905</epage><pages>899-905</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Wavefront‐propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable‐gap undulator line at the soft X‐ray free‐electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free‐electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined. The new monochromator beamline at FLASH, the free‐electron laser of Hamburg, is designed to work in the soft X‐ray range, covering a spectral range from 1 to 20 nm and with a spectral resolution of approximately 2000. Wave‐propagation simulations were performed to provide the design of this beamline further insights with respect to the optical quality required.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31074455</pmid><doi>10.1107/S160057751900345X</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2019-05, Vol.26 (3), p.899-905
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_2231947268
source Wiley Online Library (Open Access Collection)
subjects diffraction gratings
free‐electron lasers
Laser beams
Mathematical analysis
Misalignment
monochromators
Optical components
Propagation
Simulation
Tolerances
ultrafast optics
Wave propagation
wavefront propagation
wavefront simulations
title Wavefront‐propagation simulations supporting the design of a time‐delay compensating monochromator beamline at FLASH2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavefront%E2%80%90propagation%20simulations%20supporting%20the%20design%20of%20a%20time%E2%80%90delay%20compensating%20monochromator%20beamline%20at%20FLASH2&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Ruiz-Lopez,%20Mabel&rft.date=2019-05&rft.volume=26&rft.issue=3&rft.spage=899&rft.epage=905&rft.pages=899-905&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S160057751900345X&rft_dat=%3Cproquest_24P%3E2231947268%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222636611&rft_id=info:pmid/31074455&rfr_iscdi=true