C-type natriuretic peptide signaling in human follicular environment and its relation with oocyte maturation

Studies in mice have shown that C-type natriuretic peptide (CNP) is produced by granulosa cells and contributes to ovarian follicle growth and oocyte meiotic arrest until the preovulatory LH surge. In humans, the relationship between intraovarian CNP levels and oocyte meiotic resumption is unknown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular endocrinology 2019-07, Vol.492, p.110444-110444, Article 110444
Hauptverfasser: Casalechi, Maíra, Dias, Júlia A., Pinto, Lorena V., Lobach, Verônica N., Pereira, Maria T., Cavallo, Ines K., Reis, Adelina M., Dela Cruz, Cynthia, Reis, Fernando M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies in mice have shown that C-type natriuretic peptide (CNP) is produced by granulosa cells and contributes to ovarian follicle growth and oocyte meiotic arrest until the preovulatory LH surge. In humans, the relationship between intraovarian CNP levels and oocyte meiotic resumption is unknown. The aim of this study was to investigate whether CNP and its receptor NPR2 are expressed in human ovarian follicles and if their levels change according to the meiotic phase of oocytes. We collected follicular fluid (FF) and luteinized granulosa cells (LGC) from follicle pools (n = 47), and FF, LGC and cumulus cells (CC) from individual follicles (n = 96) during oocyte pickup for in vitro fertilization. There was a positive linear correlation between CNP levels in FF pools and basal antral follicle counting (rs = 0.458; p = 0.002), number of preovulatory follicles >16 mm (rs = 0.361; p = 0.016) and number of oocytes retrieved (rs = 0,378; p = 0.011) and a negative correlation between CNP levels in FF pools and the percentage of mature (MII) oocytes retrieved (rs = −0.39; p = 0.033). FF CNP levels in follicles containing MII oocytes were significantly lower than in follicles containing immature (MI) oocytes (median = 0.44 vs. 0.57 ng/mL, p 
ISSN:0303-7207
1872-8057
DOI:10.1016/j.mce.2019.05.003