Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor

Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2019-08, Vol.127 (2), p.495-507
Hauptverfasser: Uribe‐Flores, M.M., Cerqueda‐García, D., Hernández‐Nuñez, E., Cadena, S., García‐Cruz, N.U., Trejo‐Hernández, M.R., Aguirre‐Macedo, M.L., García‐Maldonado, J.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 2
container_start_page 495
container_title Journal of applied microbiology
container_volume 127
creator Uribe‐Flores, M.M.
Cerqueda‐García, D.
Hernández‐Nuñez, E.
Cadena, S.
García‐Cruz, N.U.
Trejo‐Hernández, M.R.
Aguirre‐Macedo, M.L.
García‐Maldonado, J.Q.
description Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability. Conclusions This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time. Significance and Impact of the Study Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.
doi_str_mv 10.1111/jam.14307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231904608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252990172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSDuOYzs5lqpAqyIucI6849ldrxJ7sWOhvfEI5RV5ErzdtgckfBlL8-mb0fxV9ZrDKS_vbGOmU94K0E-qYy6UrBulm6d3_7aWoJuj6kVKGwAuQKrn1ZHgoLXk_Lj6_cHgTNGZkaWMSCm54JnxlmH48-s2IOYYySOxrZkL6BMLy9Jn5KPDNVk2meg8sclhDIu9B8M0Ze_mHbO5tFZsdKv1zDBmSyy4kVlaRWPNvJ_kyjC2MDOuWaSySogvq2dLMyZ6dV9Pqu8fL79dfK5vvn66uji_qVFIoeul6niLbQOkjVB9xy0iICiQXFropaBuoXjXkbXSSMWN6XSnZAukwEpAcVK9O3i3MfzIlOZhcglpHI2nkNPQNIL30CroCvr2H3QTcvRlu0LJpu-B66ZQ7w9UOURKkZbDNrpynd3AYdjnNJSchrucCvvm3pgXE9lH8iGYApwdgJ9upN3_TcP1-ZeD8i9WIp4Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252990172</pqid></control><display><type>article</type><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</creator><creatorcontrib>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</creatorcontrib><description>Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability. Conclusions This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time. Significance and Impact of the Study Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.14307</identifier><identifier>PMID: 31077511</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acclimatization ; Algorithms ; Alkanes ; Aromatic compounds ; Bacteria ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Batch reactors ; Biodegradation ; Biodegradation, Environmental ; Communities ; Consortia ; co‐occurrence network ; Crude oil ; enriched marine microbial community ; Gene sequencing ; Genera ; Gulf of Mexico ; Hydrocarbons ; light crude oil ; Microbial Consortia ; microbial succession ; Microbiomes ; Microorganisms ; Petroleum - metabolism ; Petroleum hydrocarbons ; Photodegradation ; RNA, Ribosomal, 16S - genetics ; rRNA 16S</subject><ispartof>Journal of applied microbiology, 2019-08, Vol.127 (2), p.495-507</ispartof><rights>2019 The Society for Applied Microbiology</rights><rights>2019 The Society for Applied Microbiology.</rights><rights>Copyright © 2019 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</citedby><cites>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</cites><orcidid>0000-0001-7023-3916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.14307$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.14307$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31077511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uribe‐Flores, M.M.</creatorcontrib><creatorcontrib>Cerqueda‐García, D.</creatorcontrib><creatorcontrib>Hernández‐Nuñez, E.</creatorcontrib><creatorcontrib>Cadena, S.</creatorcontrib><creatorcontrib>García‐Cruz, N.U.</creatorcontrib><creatorcontrib>Trejo‐Hernández, M.R.</creatorcontrib><creatorcontrib>Aguirre‐Macedo, M.L.</creatorcontrib><creatorcontrib>García‐Maldonado, J.Q.</creatorcontrib><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability. Conclusions This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time. Significance and Impact of the Study Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</description><subject>Acclimatization</subject><subject>Algorithms</subject><subject>Alkanes</subject><subject>Aromatic compounds</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Batch reactors</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Communities</subject><subject>Consortia</subject><subject>co‐occurrence network</subject><subject>Crude oil</subject><subject>enriched marine microbial community</subject><subject>Gene sequencing</subject><subject>Genera</subject><subject>Gulf of Mexico</subject><subject>Hydrocarbons</subject><subject>light crude oil</subject><subject>Microbial Consortia</subject><subject>microbial succession</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Petroleum - metabolism</subject><subject>Petroleum hydrocarbons</subject><subject>Photodegradation</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSDuOYzs5lqpAqyIucI6849ldrxJ7sWOhvfEI5RV5ErzdtgckfBlL8-mb0fxV9ZrDKS_vbGOmU94K0E-qYy6UrBulm6d3_7aWoJuj6kVKGwAuQKrn1ZHgoLXk_Lj6_cHgTNGZkaWMSCm54JnxlmH48-s2IOYYySOxrZkL6BMLy9Jn5KPDNVk2meg8sclhDIu9B8M0Ze_mHbO5tFZsdKv1zDBmSyy4kVlaRWPNvJ_kyjC2MDOuWaSySogvq2dLMyZ6dV9Pqu8fL79dfK5vvn66uji_qVFIoeul6niLbQOkjVB9xy0iICiQXFropaBuoXjXkbXSSMWN6XSnZAukwEpAcVK9O3i3MfzIlOZhcglpHI2nkNPQNIL30CroCvr2H3QTcvRlu0LJpu-B66ZQ7w9UOURKkZbDNrpynd3AYdjnNJSchrucCvvm3pgXE9lH8iGYApwdgJ9upN3_TcP1-ZeD8i9WIp4Z</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Uribe‐Flores, M.M.</creator><creator>Cerqueda‐García, D.</creator><creator>Hernández‐Nuñez, E.</creator><creator>Cadena, S.</creator><creator>García‐Cruz, N.U.</creator><creator>Trejo‐Hernández, M.R.</creator><creator>Aguirre‐Macedo, M.L.</creator><creator>García‐Maldonado, J.Q.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7023-3916</orcidid></search><sort><creationdate>201908</creationdate><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><author>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acclimatization</topic><topic>Algorithms</topic><topic>Alkanes</topic><topic>Aromatic compounds</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Batch reactors</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Communities</topic><topic>Consortia</topic><topic>co‐occurrence network</topic><topic>Crude oil</topic><topic>enriched marine microbial community</topic><topic>Gene sequencing</topic><topic>Genera</topic><topic>Gulf of Mexico</topic><topic>Hydrocarbons</topic><topic>light crude oil</topic><topic>Microbial Consortia</topic><topic>microbial succession</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Petroleum - metabolism</topic><topic>Petroleum hydrocarbons</topic><topic>Photodegradation</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uribe‐Flores, M.M.</creatorcontrib><creatorcontrib>Cerqueda‐García, D.</creatorcontrib><creatorcontrib>Hernández‐Nuñez, E.</creatorcontrib><creatorcontrib>Cadena, S.</creatorcontrib><creatorcontrib>García‐Cruz, N.U.</creatorcontrib><creatorcontrib>Trejo‐Hernández, M.R.</creatorcontrib><creatorcontrib>Aguirre‐Macedo, M.L.</creatorcontrib><creatorcontrib>García‐Maldonado, J.Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uribe‐Flores, M.M.</au><au>Cerqueda‐García, D.</au><au>Hernández‐Nuñez, E.</au><au>Cadena, S.</au><au>García‐Cruz, N.U.</au><au>Trejo‐Hernández, M.R.</au><au>Aguirre‐Macedo, M.L.</au><au>García‐Maldonado, J.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>127</volume><issue>2</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability. Conclusions This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time. Significance and Impact of the Study Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31077511</pmid><doi>10.1111/jam.14307</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7023-3916</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2019-08, Vol.127 (2), p.495-507
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_2231904608
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acclimatization
Algorithms
Alkanes
Aromatic compounds
Bacteria
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Batch reactors
Biodegradation
Biodegradation, Environmental
Communities
Consortia
co‐occurrence network
Crude oil
enriched marine microbial community
Gene sequencing
Genera
Gulf of Mexico
Hydrocarbons
light crude oil
Microbial Consortia
microbial succession
Microbiomes
Microorganisms
Petroleum - metabolism
Petroleum hydrocarbons
Photodegradation
RNA, Ribosomal, 16S - genetics
rRNA 16S
title Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20succession%20and%20co%E2%80%90occurrence%20patterns%20of%20an%20enriched%20marine%20microbial%20community%20during%20light%20crude%20oil%20degradation%20in%20a%20batch%20reactor&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Uribe%E2%80%90Flores,%20M.M.&rft.date=2019-08&rft.volume=127&rft.issue=2&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.14307&rft_dat=%3Cproquest_cross%3E2252990172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252990172&rft_id=info:pmid/31077511&rfr_iscdi=true