Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor
Aims The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment. Methods and Results The bacterial community effectively removed 76·49% of total petro...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2019-08, Vol.127 (2), p.495-507 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 2 |
container_start_page | 495 |
container_title | Journal of applied microbiology |
container_volume | 127 |
creator | Uribe‐Flores, M.M. Cerqueda‐García, D. Hernández‐Nuñez, E. Cadena, S. García‐Cruz, N.U. Trejo‐Hernández, M.R. Aguirre‐Macedo, M.L. García‐Maldonado, J.Q. |
description | Aims
The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment.
Methods and Results
The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability.
Conclusions
This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time.
Significance and Impact of the Study
Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms. |
doi_str_mv | 10.1111/jam.14307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231904608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252990172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSDuOYzs5lqpAqyIucI6849ldrxJ7sWOhvfEI5RV5ErzdtgckfBlL8-mb0fxV9ZrDKS_vbGOmU94K0E-qYy6UrBulm6d3_7aWoJuj6kVKGwAuQKrn1ZHgoLXk_Lj6_cHgTNGZkaWMSCm54JnxlmH48-s2IOYYySOxrZkL6BMLy9Jn5KPDNVk2meg8sclhDIu9B8M0Ze_mHbO5tFZsdKv1zDBmSyy4kVlaRWPNvJ_kyjC2MDOuWaSySogvq2dLMyZ6dV9Pqu8fL79dfK5vvn66uji_qVFIoeul6niLbQOkjVB9xy0iICiQXFropaBuoXjXkbXSSMWN6XSnZAukwEpAcVK9O3i3MfzIlOZhcglpHI2nkNPQNIL30CroCvr2H3QTcvRlu0LJpu-B66ZQ7w9UOURKkZbDNrpynd3AYdjnNJSchrucCvvm3pgXE9lH8iGYApwdgJ9upN3_TcP1-ZeD8i9WIp4Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252990172</pqid></control><display><type>article</type><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</creator><creatorcontrib>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</creatorcontrib><description>Aims
The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment.
Methods and Results
The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability.
Conclusions
This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time.
Significance and Impact of the Study
Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.14307</identifier><identifier>PMID: 31077511</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acclimatization ; Algorithms ; Alkanes ; Aromatic compounds ; Bacteria ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Batch reactors ; Biodegradation ; Biodegradation, Environmental ; Communities ; Consortia ; co‐occurrence network ; Crude oil ; enriched marine microbial community ; Gene sequencing ; Genera ; Gulf of Mexico ; Hydrocarbons ; light crude oil ; Microbial Consortia ; microbial succession ; Microbiomes ; Microorganisms ; Petroleum - metabolism ; Petroleum hydrocarbons ; Photodegradation ; RNA, Ribosomal, 16S - genetics ; rRNA 16S</subject><ispartof>Journal of applied microbiology, 2019-08, Vol.127 (2), p.495-507</ispartof><rights>2019 The Society for Applied Microbiology</rights><rights>2019 The Society for Applied Microbiology.</rights><rights>Copyright © 2019 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</citedby><cites>FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</cites><orcidid>0000-0001-7023-3916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.14307$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.14307$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31077511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uribe‐Flores, M.M.</creatorcontrib><creatorcontrib>Cerqueda‐García, D.</creatorcontrib><creatorcontrib>Hernández‐Nuñez, E.</creatorcontrib><creatorcontrib>Cadena, S.</creatorcontrib><creatorcontrib>García‐Cruz, N.U.</creatorcontrib><creatorcontrib>Trejo‐Hernández, M.R.</creatorcontrib><creatorcontrib>Aguirre‐Macedo, M.L.</creatorcontrib><creatorcontrib>García‐Maldonado, J.Q.</creatorcontrib><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims
The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment.
Methods and Results
The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability.
Conclusions
This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time.
Significance and Impact of the Study
Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</description><subject>Acclimatization</subject><subject>Algorithms</subject><subject>Alkanes</subject><subject>Aromatic compounds</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Batch reactors</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Communities</subject><subject>Consortia</subject><subject>co‐occurrence network</subject><subject>Crude oil</subject><subject>enriched marine microbial community</subject><subject>Gene sequencing</subject><subject>Genera</subject><subject>Gulf of Mexico</subject><subject>Hydrocarbons</subject><subject>light crude oil</subject><subject>Microbial Consortia</subject><subject>microbial succession</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Petroleum - metabolism</subject><subject>Petroleum hydrocarbons</subject><subject>Photodegradation</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw4AWQJS5wSDuOYzs5lqpAqyIucI6849ldrxJ7sWOhvfEI5RV5ErzdtgckfBlL8-mb0fxV9ZrDKS_vbGOmU94K0E-qYy6UrBulm6d3_7aWoJuj6kVKGwAuQKrn1ZHgoLXk_Lj6_cHgTNGZkaWMSCm54JnxlmH48-s2IOYYySOxrZkL6BMLy9Jn5KPDNVk2meg8sclhDIu9B8M0Ze_mHbO5tFZsdKv1zDBmSyy4kVlaRWPNvJ_kyjC2MDOuWaSySogvq2dLMyZ6dV9Pqu8fL79dfK5vvn66uji_qVFIoeul6niLbQOkjVB9xy0iICiQXFropaBuoXjXkbXSSMWN6XSnZAukwEpAcVK9O3i3MfzIlOZhcglpHI2nkNPQNIL30CroCvr2H3QTcvRlu0LJpu-B66ZQ7w9UOURKkZbDNrpynd3AYdjnNJSchrucCvvm3pgXE9lH8iGYApwdgJ9upN3_TcP1-ZeD8i9WIp4Z</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Uribe‐Flores, M.M.</creator><creator>Cerqueda‐García, D.</creator><creator>Hernández‐Nuñez, E.</creator><creator>Cadena, S.</creator><creator>García‐Cruz, N.U.</creator><creator>Trejo‐Hernández, M.R.</creator><creator>Aguirre‐Macedo, M.L.</creator><creator>García‐Maldonado, J.Q.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7023-3916</orcidid></search><sort><creationdate>201908</creationdate><title>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</title><author>Uribe‐Flores, M.M. ; Cerqueda‐García, D. ; Hernández‐Nuñez, E. ; Cadena, S. ; García‐Cruz, N.U. ; Trejo‐Hernández, M.R. ; Aguirre‐Macedo, M.L. ; García‐Maldonado, J.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-f6814c420e7a36981dcc0c060515d0953e8b6188edd5a561aa8786540e60d50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acclimatization</topic><topic>Algorithms</topic><topic>Alkanes</topic><topic>Aromatic compounds</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Batch reactors</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Communities</topic><topic>Consortia</topic><topic>co‐occurrence network</topic><topic>Crude oil</topic><topic>enriched marine microbial community</topic><topic>Gene sequencing</topic><topic>Genera</topic><topic>Gulf of Mexico</topic><topic>Hydrocarbons</topic><topic>light crude oil</topic><topic>Microbial Consortia</topic><topic>microbial succession</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Petroleum - metabolism</topic><topic>Petroleum hydrocarbons</topic><topic>Photodegradation</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uribe‐Flores, M.M.</creatorcontrib><creatorcontrib>Cerqueda‐García, D.</creatorcontrib><creatorcontrib>Hernández‐Nuñez, E.</creatorcontrib><creatorcontrib>Cadena, S.</creatorcontrib><creatorcontrib>García‐Cruz, N.U.</creatorcontrib><creatorcontrib>Trejo‐Hernández, M.R.</creatorcontrib><creatorcontrib>Aguirre‐Macedo, M.L.</creatorcontrib><creatorcontrib>García‐Maldonado, J.Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uribe‐Flores, M.M.</au><au>Cerqueda‐García, D.</au><au>Hernández‐Nuñez, E.</au><au>Cadena, S.</au><au>García‐Cruz, N.U.</au><au>Trejo‐Hernández, M.R.</au><au>Aguirre‐Macedo, M.L.</au><au>García‐Maldonado, J.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>127</volume><issue>2</issue><spage>495</spage><epage>507</epage><pages>495-507</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims
The aim of this study was to investigate the dynamic changes in the bacterial structure and potential interactions of an acclimatized marine microbial community during a light crude oil degradation experiment.
Methods and Results
The bacterial community effectively removed 76·49% of total petroleum hydrocarbons after 30 days, as evidenced by GC‐FID and GC‐MS analyses. Short‐chain alkanes and specific aromatic compounds were completely degraded within the first 6 days. High‐throughput sequencing of 16S rRNA gene indicated that the starting bacterial community was mainly composed by Marinobacter and more than 30 non‐dominant genera. Bacterial succession was dependent on the hydrocarbon uptake with Alcanivorax becoming dominant during the highest degradation period. Sparse correlations for compositional data algorithm revealed one operational taxonomic unit (OTU) of Muricauda and an assembly of six OTUs of Alcanivorax dieselolei and Alcanivorax hongdengensis as critical keystone components for the consortium network maintenance and stability.
Conclusions
This work exhibits a stabilized marine bacterial consortium with the capability to efficiently degrade light crude oil in 6 days, under laboratory conditions. Successional and interaction patterns were observed in response to hydrocarbon consumption, highlighting potential interactions between Alcanivorax and keystone non‐dominant OTUs over time.
Significance and Impact of the Study
Our results contribute to the understanding of interactions and potential roles of specific members of hydrocarbonoclastic marine bacterial communities, which will be useful for further bioaugmentation studies concerning the associations between indigenous and introduced micro‐organisms.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31077511</pmid><doi>10.1111/jam.14307</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7023-3916</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2019-08, Vol.127 (2), p.495-507 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231904608 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acclimatization Algorithms Alkanes Aromatic compounds Bacteria Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Batch reactors Biodegradation Biodegradation, Environmental Communities Consortia co‐occurrence network Crude oil enriched marine microbial community Gene sequencing Genera Gulf of Mexico Hydrocarbons light crude oil Microbial Consortia microbial succession Microbiomes Microorganisms Petroleum - metabolism Petroleum hydrocarbons Photodegradation RNA, Ribosomal, 16S - genetics rRNA 16S |
title | Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20succession%20and%20co%E2%80%90occurrence%20patterns%20of%20an%20enriched%20marine%20microbial%20community%20during%20light%20crude%20oil%20degradation%20in%20a%20batch%20reactor&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Uribe%E2%80%90Flores,%20M.M.&rft.date=2019-08&rft.volume=127&rft.issue=2&rft.spage=495&rft.epage=507&rft.pages=495-507&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.14307&rft_dat=%3Cproquest_cross%3E2252990172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252990172&rft_id=info:pmid/31077511&rfr_iscdi=true |