The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis
Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the pres...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2019-09, Vol.107 (9), p.2040-2052 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2052 |
---|---|
container_issue | 9 |
container_start_page | 2040 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 107 |
creator | Rahmani, Amin Hashemi‐Najafabadi, Sameereh Eslaminejad, Mohamadreza Baghaban Bagheri, Fatemeh Sayahpour, Forough Azam |
description | Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the present study, modified fibrous scaffolds were prepared by electrospinning and subsequent ultrasonication of polycaprolactone (PCL) containing nano‐hydroxyapatite (n‐HA), with/without nano‐zinc oxide (n‐ZnO), and polyethylene oxide [PEO] as a sacrificial agent. The physical, mechanical, and chemical characteristics of the scaffolds were evaluated. The results showed the presence of n‐ZnO, which in turn increased Young's module of the scaffolds from 5.5 ± 0.67 to 6.7 ± 1.77 MPa. Moreover, MTT, SEM, alkaline phosphatase (ALP) activity, chicken embryo chorioallantoic membrane (CAM) assay, and real‐time RT‐PCR were utilized to investigate the biocompatibility, cell adhesion and infiltration, osteoconductivity, angiogenic properties, and expression of osteogenic and angiogenic related genes. ALP assay showed that the highest enzyme activity was noted when the modified scaffolds containing n‐ZnO were seeded with HUVEC:hBMSC at the cell ratio of 1:5. CAM assay showed induction of angiogenesis for the scaffolds containing n‐ZnO. Real‐time RT‐PCR results showed significant upregulation of angiogenic related genes. Thus, the scaffolds containing n‐ZnO may have great potential for osteogenesis and angiogenesis in tissue engineering applications. |
doi_str_mv | 10.1002/jbm.a.36717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231904523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256597143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3977-36cfda1fb16d59689d2713889435c68cb48a4b287277ae63d37b03d7ffa0abe63</originalsourceid><addsrcrecordid>eNp9kLtKBDEUhoMo3it7CdgIMmvumZTr4pUVLbSxMGQmic4yM1knO8h2PoLP6JOYddXCwuLkhJ-Pn8MHwB5GA4wQOZ4UzcAMqJBYroBNzDnJmBJ8dfFnKqNEiQ2wFeMkwQJxsg42KEZScsY2wePds4POe1fOYPCwCbbylbPQ1SnpQpz2LbwdjT_e3tuL4eJ9aG9gLI33obYRhhaGOHPhybUuVhGa1qZ5qn6CHbDmTR3d7vfeBvdnp3eji2x8c345Go6zkiopMypKbw32BRaWK5ErSySmea4Y5aXIy4LlhhUkl0RK4wS1VBaIWum9QaZIwTY4XPZOu_DSuzjTTRVLV9emdaGPmhCKFWKc0IQe_EEnoe_adF2iuOBKYragjpZUmSTEznk97arGdHONkV5o10m7NvpLe6L3vzv7onH2l_3xnACyBF6r2s3_69JXJ9fDZesnZxiOug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256597143</pqid></control><display><type>article</type><title>The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rahmani, Amin ; Hashemi‐Najafabadi, Sameereh ; Eslaminejad, Mohamadreza Baghaban ; Bagheri, Fatemeh ; Sayahpour, Forough Azam</creator><creatorcontrib>Rahmani, Amin ; Hashemi‐Najafabadi, Sameereh ; Eslaminejad, Mohamadreza Baghaban ; Bagheri, Fatemeh ; Sayahpour, Forough Azam</creatorcontrib><description>Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the present study, modified fibrous scaffolds were prepared by electrospinning and subsequent ultrasonication of polycaprolactone (PCL) containing nano‐hydroxyapatite (n‐HA), with/without nano‐zinc oxide (n‐ZnO), and polyethylene oxide [PEO] as a sacrificial agent. The physical, mechanical, and chemical characteristics of the scaffolds were evaluated. The results showed the presence of n‐ZnO, which in turn increased Young's module of the scaffolds from 5.5 ± 0.67 to 6.7 ± 1.77 MPa. Moreover, MTT, SEM, alkaline phosphatase (ALP) activity, chicken embryo chorioallantoic membrane (CAM) assay, and real‐time RT‐PCR were utilized to investigate the biocompatibility, cell adhesion and infiltration, osteoconductivity, angiogenic properties, and expression of osteogenic and angiogenic related genes. ALP assay showed that the highest enzyme activity was noted when the modified scaffolds containing n‐ZnO were seeded with HUVEC:hBMSC at the cell ratio of 1:5. CAM assay showed induction of angiogenesis for the scaffolds containing n‐ZnO. Real‐time RT‐PCR results showed significant upregulation of angiogenic related genes. Thus, the scaffolds containing n‐ZnO may have great potential for osteogenesis and angiogenesis in tissue engineering applications.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36717</identifier><identifier>PMID: 31077544</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Alkaline phosphatase ; Angiogenesis ; Assaying ; Biocompatibility ; bone tissue engineering ; Cell adhesion ; Cell adhesion & migration ; Chorioallantoic membrane ; electrospinning ; Embryos ; Enzymatic activity ; Enzyme activity ; Gene expression ; Genes ; Hydroxyapatite ; Infiltration ; n‐ZnO ; Organic chemistry ; Osteoconduction ; Osteogenesis ; Polycaprolactone ; Polyethylene ; Polyethylene oxide ; Polyethylenes ; Poultry ; Scaffolds ; Surgical implants ; Tissue engineering ; Zinc ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of biomedical materials research. Part A, 2019-09, Vol.107 (9), p.2040-2052</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3977-36cfda1fb16d59689d2713889435c68cb48a4b287277ae63d37b03d7ffa0abe63</citedby><cites>FETCH-LOGICAL-c3977-36cfda1fb16d59689d2713889435c68cb48a4b287277ae63d37b03d7ffa0abe63</cites><orcidid>0000-0001-7826-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36717$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36717$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31077544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmani, Amin</creatorcontrib><creatorcontrib>Hashemi‐Najafabadi, Sameereh</creatorcontrib><creatorcontrib>Eslaminejad, Mohamadreza Baghaban</creatorcontrib><creatorcontrib>Bagheri, Fatemeh</creatorcontrib><creatorcontrib>Sayahpour, Forough Azam</creatorcontrib><title>The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the present study, modified fibrous scaffolds were prepared by electrospinning and subsequent ultrasonication of polycaprolactone (PCL) containing nano‐hydroxyapatite (n‐HA), with/without nano‐zinc oxide (n‐ZnO), and polyethylene oxide [PEO] as a sacrificial agent. The physical, mechanical, and chemical characteristics of the scaffolds were evaluated. The results showed the presence of n‐ZnO, which in turn increased Young's module of the scaffolds from 5.5 ± 0.67 to 6.7 ± 1.77 MPa. Moreover, MTT, SEM, alkaline phosphatase (ALP) activity, chicken embryo chorioallantoic membrane (CAM) assay, and real‐time RT‐PCR were utilized to investigate the biocompatibility, cell adhesion and infiltration, osteoconductivity, angiogenic properties, and expression of osteogenic and angiogenic related genes. ALP assay showed that the highest enzyme activity was noted when the modified scaffolds containing n‐ZnO were seeded with HUVEC:hBMSC at the cell ratio of 1:5. CAM assay showed induction of angiogenesis for the scaffolds containing n‐ZnO. Real‐time RT‐PCR results showed significant upregulation of angiogenic related genes. Thus, the scaffolds containing n‐ZnO may have great potential for osteogenesis and angiogenesis in tissue engineering applications.</description><subject>Alkaline phosphatase</subject><subject>Angiogenesis</subject><subject>Assaying</subject><subject>Biocompatibility</subject><subject>bone tissue engineering</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Chorioallantoic membrane</subject><subject>electrospinning</subject><subject>Embryos</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hydroxyapatite</subject><subject>Infiltration</subject><subject>n‐ZnO</subject><subject>Organic chemistry</subject><subject>Osteoconduction</subject><subject>Osteogenesis</subject><subject>Polycaprolactone</subject><subject>Polyethylene</subject><subject>Polyethylene oxide</subject><subject>Polyethylenes</subject><subject>Poultry</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtKBDEUhoMo3it7CdgIMmvumZTr4pUVLbSxMGQmic4yM1knO8h2PoLP6JOYddXCwuLkhJ-Pn8MHwB5GA4wQOZ4UzcAMqJBYroBNzDnJmBJ8dfFnKqNEiQ2wFeMkwQJxsg42KEZScsY2wePds4POe1fOYPCwCbbylbPQ1SnpQpz2LbwdjT_e3tuL4eJ9aG9gLI33obYRhhaGOHPhybUuVhGa1qZ5qn6CHbDmTR3d7vfeBvdnp3eji2x8c345Go6zkiopMypKbw32BRaWK5ErSySmea4Y5aXIy4LlhhUkl0RK4wS1VBaIWum9QaZIwTY4XPZOu_DSuzjTTRVLV9emdaGPmhCKFWKc0IQe_EEnoe_adF2iuOBKYragjpZUmSTEznk97arGdHONkV5o10m7NvpLe6L3vzv7onH2l_3xnACyBF6r2s3_69JXJ9fDZesnZxiOug</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rahmani, Amin</creator><creator>Hashemi‐Najafabadi, Sameereh</creator><creator>Eslaminejad, Mohamadreza Baghaban</creator><creator>Bagheri, Fatemeh</creator><creator>Sayahpour, Forough Azam</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7826-6325</orcidid></search><sort><creationdate>201909</creationdate><title>The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis</title><author>Rahmani, Amin ; Hashemi‐Najafabadi, Sameereh ; Eslaminejad, Mohamadreza Baghaban ; Bagheri, Fatemeh ; Sayahpour, Forough Azam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3977-36cfda1fb16d59689d2713889435c68cb48a4b287277ae63d37b03d7ffa0abe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaline phosphatase</topic><topic>Angiogenesis</topic><topic>Assaying</topic><topic>Biocompatibility</topic><topic>bone tissue engineering</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Chorioallantoic membrane</topic><topic>electrospinning</topic><topic>Embryos</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hydroxyapatite</topic><topic>Infiltration</topic><topic>n‐ZnO</topic><topic>Organic chemistry</topic><topic>Osteoconduction</topic><topic>Osteogenesis</topic><topic>Polycaprolactone</topic><topic>Polyethylene</topic><topic>Polyethylene oxide</topic><topic>Polyethylenes</topic><topic>Poultry</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmani, Amin</creatorcontrib><creatorcontrib>Hashemi‐Najafabadi, Sameereh</creatorcontrib><creatorcontrib>Eslaminejad, Mohamadreza Baghaban</creatorcontrib><creatorcontrib>Bagheri, Fatemeh</creatorcontrib><creatorcontrib>Sayahpour, Forough Azam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmani, Amin</au><au>Hashemi‐Najafabadi, Sameereh</au><au>Eslaminejad, Mohamadreza Baghaban</au><au>Bagheri, Fatemeh</au><au>Sayahpour, Forough Azam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2019-09</date><risdate>2019</risdate><volume>107</volume><issue>9</issue><spage>2040</spage><epage>2052</epage><pages>2040-2052</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Large bone defects treatment is one of the challenges in current bone tissue engineering approaches. Various strategies have been proposed to address this issue, among which, prevascularization by coculturing of angiogenic and osteogenic cells on the scaffolds can alleviate this problem. In the present study, modified fibrous scaffolds were prepared by electrospinning and subsequent ultrasonication of polycaprolactone (PCL) containing nano‐hydroxyapatite (n‐HA), with/without nano‐zinc oxide (n‐ZnO), and polyethylene oxide [PEO] as a sacrificial agent. The physical, mechanical, and chemical characteristics of the scaffolds were evaluated. The results showed the presence of n‐ZnO, which in turn increased Young's module of the scaffolds from 5.5 ± 0.67 to 6.7 ± 1.77 MPa. Moreover, MTT, SEM, alkaline phosphatase (ALP) activity, chicken embryo chorioallantoic membrane (CAM) assay, and real‐time RT‐PCR were utilized to investigate the biocompatibility, cell adhesion and infiltration, osteoconductivity, angiogenic properties, and expression of osteogenic and angiogenic related genes. ALP assay showed that the highest enzyme activity was noted when the modified scaffolds containing n‐ZnO were seeded with HUVEC:hBMSC at the cell ratio of 1:5. CAM assay showed induction of angiogenesis for the scaffolds containing n‐ZnO. Real‐time RT‐PCR results showed significant upregulation of angiogenic related genes. Thus, the scaffolds containing n‐ZnO may have great potential for osteogenesis and angiogenesis in tissue engineering applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31077544</pmid><doi>10.1002/jbm.a.36717</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7826-6325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2019-09, Vol.107 (9), p.2040-2052 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231904523 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alkaline phosphatase Angiogenesis Assaying Biocompatibility bone tissue engineering Cell adhesion Cell adhesion & migration Chorioallantoic membrane electrospinning Embryos Enzymatic activity Enzyme activity Gene expression Genes Hydroxyapatite Infiltration n‐ZnO Organic chemistry Osteoconduction Osteogenesis Polycaprolactone Polyethylene Polyethylene oxide Polyethylenes Poultry Scaffolds Surgical implants Tissue engineering Zinc Zinc oxide Zinc oxides |
title | The effect of modified electrospun PCL‐nHA‐nZnO scaffolds on osteogenesis and angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20modified%20electrospun%20PCL%E2%80%90nHA%E2%80%90nZnO%20scaffolds%20on%20osteogenesis%20and%20angiogenesis&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Rahmani,%20Amin&rft.date=2019-09&rft.volume=107&rft.issue=9&rft.spage=2040&rft.epage=2052&rft.pages=2040-2052&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36717&rft_dat=%3Cproquest_cross%3E2256597143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256597143&rft_id=info:pmid/31077544&rfr_iscdi=true |