HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells
The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 v...
Gespeichert in:
Veröffentlicht in: | Cancer gene therapy 2020-05, Vol.27 (5), p.319-329 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 5 |
container_start_page | 319 |
container_title | Cancer gene therapy |
container_volume | 27 |
creator | Serafim, Rodolfo B. Cardoso, Cibele Di Cristofaro, Luis F. M. Pienna Soares, Christiane Araújo Silva, Wilson Espreafico, Enilza M. Paçó-Larson, Maria L. Price, Brendan D. Valente, Valeria |
description | The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM. |
doi_str_mv | 10.1038/s41417-019-0103-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231854613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624441336</galeid><sourcerecordid>A624441336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</originalsourceid><addsrcrecordid>eNp1kl9rFDEUxQdR7Fr9AL5IQBBfpub_TB5LUasUFLHPIZPc7KadSdZkBum3N-NWa0UJIZD7O4d7k9M0zwk-IZj1bwonnHQtJqpuzFr8oNkQ3slWCIwfNhusqGqJwuyoeVLKFca12LHHzREjhPUK400znX-8_PIZXcdkr136HpELJS_7uSA7ppi2EINF1uyNDfMNMtGhEG0GU6CgbFwwc0ixDdEtFhyyMI7IgZl3KHm0HUMaRlPmNJmfpfK0eeTNWODZ7XncXL57-_XsvL349P7D2elFawWTc1vH6rmj0PNeGtkrLjxn0g5-gA5jj4de4o5wQURPHZDOdMqBsKojrqNeeHbcvD747nP6tkCZ9RTK2oGJkJaiKWWkF1wSVtGXf6FXacmxdqcpx1xSoZS8o7ZmBB2iT3M2djXVp5JyzqvTSp38g6rLwRRsiuBDvb8nePWHYAdmnHcljcv6qOU-SA6gzamUDF7vc5hMvtEE6zUL-pAFXbOg1yxoXDUvbidbhgncb8Wvz68APQClluIW8t3o_3f9Aasqu-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404625996</pqid></control><display><type>article</type><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</creator><creatorcontrib>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</creatorcontrib><description>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</description><identifier>ISSN: 0929-1903</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-019-0103-0</identifier><identifier>PMID: 31138900</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 13/2 ; 13/31 ; 13/89 ; 14 ; 14/63 ; 38/109 ; 38/77 ; 631/67/1059/602 ; 631/67/1922 ; 692/53 ; 82 ; 82/80 ; Apoptosis ; Astrocytes ; Biomedical and Life Sciences ; Biomedicine ; Brain cancer ; Brain Neoplasms - pathology ; Brain Neoplasms - radiotherapy ; Brain tumors ; Cancer cells ; Care and treatment ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Cycle Checkpoints - radiation effects ; Cell death ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Proliferation - radiation effects ; Cell Survival - genetics ; Cell Survival - radiation effects ; Centromere - metabolism ; Centromere - radiation effects ; Centromere Protein A - metabolism ; Centromeres ; Development and progression ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression ; Gene Knockdown Techniques ; Gene Therapy ; Genetic aspects ; Glioblastoma ; Glioblastoma - pathology ; Glioblastoma - radiotherapy ; Glioblastoma cells ; Glioblastoma multiforme ; Health aspects ; Histone H3 ; Humans ; Ionizing radiation ; Medical prognosis ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - radiation effects ; Physiological aspects ; Radiation Tolerance - genetics ; Radioresistance ; Radiotherapy ; Senescence ; Therapeutic applications ; Tumor cells ; Tumor Stem Cell Assay</subject><ispartof>Cancer gene therapy, 2020-05, Vol.27 (5), p.319-329</ispartof><rights>Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</citedby><cites>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serafim, Rodolfo B.</creatorcontrib><creatorcontrib>Cardoso, Cibele</creatorcontrib><creatorcontrib>Di Cristofaro, Luis F. M.</creatorcontrib><creatorcontrib>Pienna Soares, Christiane</creatorcontrib><creatorcontrib>Araújo Silva, Wilson</creatorcontrib><creatorcontrib>Espreafico, Enilza M.</creatorcontrib><creatorcontrib>Paçó-Larson, Maria L.</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><creatorcontrib>Valente, Valeria</creatorcontrib><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</description><subject>13</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>14</subject><subject>14/63</subject><subject>38/109</subject><subject>38/77</subject><subject>631/67/1059/602</subject><subject>631/67/1922</subject><subject>692/53</subject><subject>82</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Astrocytes</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Brain tumors</subject><subject>Cancer cells</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Checkpoints - radiation effects</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Proliferation - radiation effects</subject><subject>Cell Survival - genetics</subject><subject>Cell Survival - radiation effects</subject><subject>Centromere - metabolism</subject><subject>Centromere - radiation effects</subject><subject>Centromere Protein A - metabolism</subject><subject>Centromeres</subject><subject>Development and progression</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Glioblastoma</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - radiotherapy</subject><subject>Glioblastoma cells</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Histone H3</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Medical prognosis</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - radiation effects</subject><subject>Physiological aspects</subject><subject>Radiation Tolerance - genetics</subject><subject>Radioresistance</subject><subject>Radiotherapy</subject><subject>Senescence</subject><subject>Therapeutic applications</subject><subject>Tumor cells</subject><subject>Tumor Stem Cell Assay</subject><issn>0929-1903</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl9rFDEUxQdR7Fr9AL5IQBBfpub_TB5LUasUFLHPIZPc7KadSdZkBum3N-NWa0UJIZD7O4d7k9M0zwk-IZj1bwonnHQtJqpuzFr8oNkQ3slWCIwfNhusqGqJwuyoeVLKFca12LHHzREjhPUK400znX-8_PIZXcdkr136HpELJS_7uSA7ppi2EINF1uyNDfMNMtGhEG0GU6CgbFwwc0ixDdEtFhyyMI7IgZl3KHm0HUMaRlPmNJmfpfK0eeTNWODZ7XncXL57-_XsvL349P7D2elFawWTc1vH6rmj0PNeGtkrLjxn0g5-gA5jj4de4o5wQURPHZDOdMqBsKojrqNeeHbcvD747nP6tkCZ9RTK2oGJkJaiKWWkF1wSVtGXf6FXacmxdqcpx1xSoZS8o7ZmBB2iT3M2djXVp5JyzqvTSp38g6rLwRRsiuBDvb8nePWHYAdmnHcljcv6qOU-SA6gzamUDF7vc5hMvtEE6zUL-pAFXbOg1yxoXDUvbidbhgncb8Wvz68APQClluIW8t3o_3f9Aasqu-E</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Serafim, Rodolfo B.</creator><creator>Cardoso, Cibele</creator><creator>Di Cristofaro, Luis F. M.</creator><creator>Pienna Soares, Christiane</creator><creator>Araújo Silva, Wilson</creator><creator>Espreafico, Enilza M.</creator><creator>Paçó-Larson, Maria L.</creator><creator>Price, Brendan D.</creator><creator>Valente, Valeria</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200501</creationdate><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><author>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>14</topic><topic>14/63</topic><topic>38/109</topic><topic>38/77</topic><topic>631/67/1059/602</topic><topic>631/67/1922</topic><topic>692/53</topic><topic>82</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Astrocytes</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Brain tumors</topic><topic>Cancer cells</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Checkpoints - radiation effects</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Proliferation - radiation effects</topic><topic>Cell Survival - genetics</topic><topic>Cell Survival - radiation effects</topic><topic>Centromere - metabolism</topic><topic>Centromere - radiation effects</topic><topic>Centromere Protein A - metabolism</topic><topic>Centromeres</topic><topic>Development and progression</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Glioblastoma</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - radiotherapy</topic><topic>Glioblastoma cells</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Histone H3</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Medical prognosis</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - radiation effects</topic><topic>Physiological aspects</topic><topic>Radiation Tolerance - genetics</topic><topic>Radioresistance</topic><topic>Radiotherapy</topic><topic>Senescence</topic><topic>Therapeutic applications</topic><topic>Tumor cells</topic><topic>Tumor Stem Cell Assay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serafim, Rodolfo B.</creatorcontrib><creatorcontrib>Cardoso, Cibele</creatorcontrib><creatorcontrib>Di Cristofaro, Luis F. M.</creatorcontrib><creatorcontrib>Pienna Soares, Christiane</creatorcontrib><creatorcontrib>Araújo Silva, Wilson</creatorcontrib><creatorcontrib>Espreafico, Enilza M.</creatorcontrib><creatorcontrib>Paçó-Larson, Maria L.</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><creatorcontrib>Valente, Valeria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serafim, Rodolfo B.</au><au>Cardoso, Cibele</au><au>Di Cristofaro, Luis F. M.</au><au>Pienna Soares, Christiane</au><au>Araújo Silva, Wilson</au><au>Espreafico, Enilza M.</au><au>Paçó-Larson, Maria L.</au><au>Price, Brendan D.</au><au>Valente, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>319</spage><epage>329</epage><pages>319-329</pages><issn>0929-1903</issn><eissn>1476-5500</eissn><abstract>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31138900</pmid><doi>10.1038/s41417-019-0103-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-1903 |
ispartof | Cancer gene therapy, 2020-05, Vol.27 (5), p.319-329 |
issn | 0929-1903 1476-5500 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231854613 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 13 13/2 13/31 13/89 14 14/63 38/109 38/77 631/67/1059/602 631/67/1922 692/53 82 82/80 Apoptosis Astrocytes Biomedical and Life Sciences Biomedicine Brain cancer Brain Neoplasms - pathology Brain Neoplasms - radiotherapy Brain tumors Cancer cells Care and treatment Cell cycle Cell Cycle Checkpoints - genetics Cell Cycle Checkpoints - radiation effects Cell death Cell Line, Tumor Cell Proliferation - genetics Cell Proliferation - radiation effects Cell Survival - genetics Cell Survival - radiation effects Centromere - metabolism Centromere - radiation effects Centromere Protein A - metabolism Centromeres Development and progression DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Gene Knockdown Techniques Gene Therapy Genetic aspects Glioblastoma Glioblastoma - pathology Glioblastoma - radiotherapy Glioblastoma cells Glioblastoma multiforme Health aspects Histone H3 Humans Ionizing radiation Medical prognosis Neoplastic Stem Cells - pathology Neoplastic Stem Cells - radiation effects Physiological aspects Radiation Tolerance - genetics Radioresistance Radiotherapy Senescence Therapeutic applications Tumor cells Tumor Stem Cell Assay |
title | HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HJURP%20knockdown%20disrupts%20clonogenic%20capacity%20and%20increases%20radiation-induced%20cell%20death%20of%20glioblastoma%20cells&rft.jtitle=Cancer%20gene%20therapy&rft.au=Serafim,%20Rodolfo%20B.&rft.date=2020-05-01&rft.volume=27&rft.issue=5&rft.spage=319&rft.epage=329&rft.pages=319-329&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-019-0103-0&rft_dat=%3Cgale_proqu%3EA624441336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404625996&rft_id=info:pmid/31138900&rft_galeid=A624441336&rfr_iscdi=true |