HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells

The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer gene therapy 2020-05, Vol.27 (5), p.319-329
Hauptverfasser: Serafim, Rodolfo B., Cardoso, Cibele, Di Cristofaro, Luis F. M., Pienna Soares, Christiane, Araújo Silva, Wilson, Espreafico, Enilza M., Paçó-Larson, Maria L., Price, Brendan D., Valente, Valeria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 5
container_start_page 319
container_title Cancer gene therapy
container_volume 27
creator Serafim, Rodolfo B.
Cardoso, Cibele
Di Cristofaro, Luis F. M.
Pienna Soares, Christiane
Araújo Silva, Wilson
Espreafico, Enilza M.
Paçó-Larson, Maria L.
Price, Brendan D.
Valente, Valeria
description The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.
doi_str_mv 10.1038/s41417-019-0103-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231854613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624441336</galeid><sourcerecordid>A624441336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</originalsourceid><addsrcrecordid>eNp1kl9rFDEUxQdR7Fr9AL5IQBBfpub_TB5LUasUFLHPIZPc7KadSdZkBum3N-NWa0UJIZD7O4d7k9M0zwk-IZj1bwonnHQtJqpuzFr8oNkQ3slWCIwfNhusqGqJwuyoeVLKFca12LHHzREjhPUK400znX-8_PIZXcdkr136HpELJS_7uSA7ppi2EINF1uyNDfMNMtGhEG0GU6CgbFwwc0ixDdEtFhyyMI7IgZl3KHm0HUMaRlPmNJmfpfK0eeTNWODZ7XncXL57-_XsvL349P7D2elFawWTc1vH6rmj0PNeGtkrLjxn0g5-gA5jj4de4o5wQURPHZDOdMqBsKojrqNeeHbcvD747nP6tkCZ9RTK2oGJkJaiKWWkF1wSVtGXf6FXacmxdqcpx1xSoZS8o7ZmBB2iT3M2djXVp5JyzqvTSp38g6rLwRRsiuBDvb8nePWHYAdmnHcljcv6qOU-SA6gzamUDF7vc5hMvtEE6zUL-pAFXbOg1yxoXDUvbidbhgncb8Wvz68APQClluIW8t3o_3f9Aasqu-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404625996</pqid></control><display><type>article</type><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</creator><creatorcontrib>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</creatorcontrib><description>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</description><identifier>ISSN: 0929-1903</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-019-0103-0</identifier><identifier>PMID: 31138900</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 13/2 ; 13/31 ; 13/89 ; 14 ; 14/63 ; 38/109 ; 38/77 ; 631/67/1059/602 ; 631/67/1922 ; 692/53 ; 82 ; 82/80 ; Apoptosis ; Astrocytes ; Biomedical and Life Sciences ; Biomedicine ; Brain cancer ; Brain Neoplasms - pathology ; Brain Neoplasms - radiotherapy ; Brain tumors ; Cancer cells ; Care and treatment ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Cycle Checkpoints - radiation effects ; Cell death ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cell Proliferation - radiation effects ; Cell Survival - genetics ; Cell Survival - radiation effects ; Centromere - metabolism ; Centromere - radiation effects ; Centromere Protein A - metabolism ; Centromeres ; Development and progression ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression ; Gene Knockdown Techniques ; Gene Therapy ; Genetic aspects ; Glioblastoma ; Glioblastoma - pathology ; Glioblastoma - radiotherapy ; Glioblastoma cells ; Glioblastoma multiforme ; Health aspects ; Histone H3 ; Humans ; Ionizing radiation ; Medical prognosis ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - radiation effects ; Physiological aspects ; Radiation Tolerance - genetics ; Radioresistance ; Radiotherapy ; Senescence ; Therapeutic applications ; Tumor cells ; Tumor Stem Cell Assay</subject><ispartof>Cancer gene therapy, 2020-05, Vol.27 (5), p.319-329</ispartof><rights>Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</citedby><cites>FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serafim, Rodolfo B.</creatorcontrib><creatorcontrib>Cardoso, Cibele</creatorcontrib><creatorcontrib>Di Cristofaro, Luis F. M.</creatorcontrib><creatorcontrib>Pienna Soares, Christiane</creatorcontrib><creatorcontrib>Araújo Silva, Wilson</creatorcontrib><creatorcontrib>Espreafico, Enilza M.</creatorcontrib><creatorcontrib>Paçó-Larson, Maria L.</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><creatorcontrib>Valente, Valeria</creatorcontrib><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</description><subject>13</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>14</subject><subject>14/63</subject><subject>38/109</subject><subject>38/77</subject><subject>631/67/1059/602</subject><subject>631/67/1922</subject><subject>692/53</subject><subject>82</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Astrocytes</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Brain tumors</subject><subject>Cancer cells</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Checkpoints - radiation effects</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Proliferation - radiation effects</subject><subject>Cell Survival - genetics</subject><subject>Cell Survival - radiation effects</subject><subject>Centromere - metabolism</subject><subject>Centromere - radiation effects</subject><subject>Centromere Protein A - metabolism</subject><subject>Centromeres</subject><subject>Development and progression</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Glioblastoma</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - radiotherapy</subject><subject>Glioblastoma cells</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Histone H3</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Medical prognosis</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - radiation effects</subject><subject>Physiological aspects</subject><subject>Radiation Tolerance - genetics</subject><subject>Radioresistance</subject><subject>Radiotherapy</subject><subject>Senescence</subject><subject>Therapeutic applications</subject><subject>Tumor cells</subject><subject>Tumor Stem Cell Assay</subject><issn>0929-1903</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl9rFDEUxQdR7Fr9AL5IQBBfpub_TB5LUasUFLHPIZPc7KadSdZkBum3N-NWa0UJIZD7O4d7k9M0zwk-IZj1bwonnHQtJqpuzFr8oNkQ3slWCIwfNhusqGqJwuyoeVLKFca12LHHzREjhPUK400znX-8_PIZXcdkr136HpELJS_7uSA7ppi2EINF1uyNDfMNMtGhEG0GU6CgbFwwc0ixDdEtFhyyMI7IgZl3KHm0HUMaRlPmNJmfpfK0eeTNWODZ7XncXL57-_XsvL349P7D2elFawWTc1vH6rmj0PNeGtkrLjxn0g5-gA5jj4de4o5wQURPHZDOdMqBsKojrqNeeHbcvD747nP6tkCZ9RTK2oGJkJaiKWWkF1wSVtGXf6FXacmxdqcpx1xSoZS8o7ZmBB2iT3M2djXVp5JyzqvTSp38g6rLwRRsiuBDvb8nePWHYAdmnHcljcv6qOU-SA6gzamUDF7vc5hMvtEE6zUL-pAFXbOg1yxoXDUvbidbhgncb8Wvz68APQClluIW8t3o_3f9Aasqu-E</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Serafim, Rodolfo B.</creator><creator>Cardoso, Cibele</creator><creator>Di Cristofaro, Luis F. M.</creator><creator>Pienna Soares, Christiane</creator><creator>Araújo Silva, Wilson</creator><creator>Espreafico, Enilza M.</creator><creator>Paçó-Larson, Maria L.</creator><creator>Price, Brendan D.</creator><creator>Valente, Valeria</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200501</creationdate><title>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</title><author>Serafim, Rodolfo B. ; Cardoso, Cibele ; Di Cristofaro, Luis F. M. ; Pienna Soares, Christiane ; Araújo Silva, Wilson ; Espreafico, Enilza M. ; Paçó-Larson, Maria L. ; Price, Brendan D. ; Valente, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-41484d2e8486a68945f436cbfbe700f0b86071451582de17a79de5c971d72f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>14</topic><topic>14/63</topic><topic>38/109</topic><topic>38/77</topic><topic>631/67/1059/602</topic><topic>631/67/1922</topic><topic>692/53</topic><topic>82</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Astrocytes</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Brain tumors</topic><topic>Cancer cells</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Checkpoints - radiation effects</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Proliferation - radiation effects</topic><topic>Cell Survival - genetics</topic><topic>Cell Survival - radiation effects</topic><topic>Centromere - metabolism</topic><topic>Centromere - radiation effects</topic><topic>Centromere Protein A - metabolism</topic><topic>Centromeres</topic><topic>Development and progression</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Glioblastoma</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - radiotherapy</topic><topic>Glioblastoma cells</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Histone H3</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Medical prognosis</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - radiation effects</topic><topic>Physiological aspects</topic><topic>Radiation Tolerance - genetics</topic><topic>Radioresistance</topic><topic>Radiotherapy</topic><topic>Senescence</topic><topic>Therapeutic applications</topic><topic>Tumor cells</topic><topic>Tumor Stem Cell Assay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serafim, Rodolfo B.</creatorcontrib><creatorcontrib>Cardoso, Cibele</creatorcontrib><creatorcontrib>Di Cristofaro, Luis F. M.</creatorcontrib><creatorcontrib>Pienna Soares, Christiane</creatorcontrib><creatorcontrib>Araújo Silva, Wilson</creatorcontrib><creatorcontrib>Espreafico, Enilza M.</creatorcontrib><creatorcontrib>Paçó-Larson, Maria L.</creatorcontrib><creatorcontrib>Price, Brendan D.</creatorcontrib><creatorcontrib>Valente, Valeria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serafim, Rodolfo B.</au><au>Cardoso, Cibele</au><au>Di Cristofaro, Luis F. M.</au><au>Pienna Soares, Christiane</au><au>Araújo Silva, Wilson</au><au>Espreafico, Enilza M.</au><au>Paçó-Larson, Maria L.</au><au>Price, Brendan D.</au><au>Valente, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>319</spage><epage>329</epage><pages>319-329</pages><issn>0929-1903</issn><eissn>1476-5500</eissn><abstract>The Holliday Junction-Recognition Protein (HJURP) was reported as overexpressed in several cancers and also strongly correlated with poor prognosis of patients, especially in glioblastoma (GBM), the most common and deadly type of primary brain tumor. HJURP is responsible for loading the histone H3 variant—the Centromeric Protein A (CENP-A)—at the centromeres in a cell cycle-regulated manner, being required for proper chromosome segregation. Here we investigated HJURP association with survival and radioresistance of different GBM cell lines. HJURP knockdown compromised the clonogenic capacity and severely impaired survival of five distinct GBM cells, while nontumor astrocytes were not affected. U251MG cells showed a robust cell cycle arrest in G2/M phases followed by a drastic increment in cell death after HJURP silencing, while U138MG and U343MG cell lines presented augmented senescence with a comparable increase in cell death. Importantly, we verified that the impact on cell cycle dynamics and clonogenic survival were associated with loss CENP-A at the centromeres. Moreover, radiation resistance was also impacted by HJURP modulation in several GBM cell lines. U87MG, T98G, U138MG, and U343MG cells were all sensitized to ionizing radiation after HJURP reduction. These data reinforce the requirement of HJURP for proliferative capacity and radioresistance of tumor cells, underlining its potential as a promising therapeutic target for GBM.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31138900</pmid><doi>10.1038/s41417-019-0103-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-1903
ispartof Cancer gene therapy, 2020-05, Vol.27 (5), p.319-329
issn 0929-1903
1476-5500
language eng
recordid cdi_proquest_miscellaneous_2231854613
source MEDLINE; Alma/SFX Local Collection
subjects 13
13/2
13/31
13/89
14
14/63
38/109
38/77
631/67/1059/602
631/67/1922
692/53
82
82/80
Apoptosis
Astrocytes
Biomedical and Life Sciences
Biomedicine
Brain cancer
Brain Neoplasms - pathology
Brain Neoplasms - radiotherapy
Brain tumors
Cancer cells
Care and treatment
Cell cycle
Cell Cycle Checkpoints - genetics
Cell Cycle Checkpoints - radiation effects
Cell death
Cell Line, Tumor
Cell Proliferation - genetics
Cell Proliferation - radiation effects
Cell Survival - genetics
Cell Survival - radiation effects
Centromere - metabolism
Centromere - radiation effects
Centromere Protein A - metabolism
Centromeres
Development and progression
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression
Gene Knockdown Techniques
Gene Therapy
Genetic aspects
Glioblastoma
Glioblastoma - pathology
Glioblastoma - radiotherapy
Glioblastoma cells
Glioblastoma multiforme
Health aspects
Histone H3
Humans
Ionizing radiation
Medical prognosis
Neoplastic Stem Cells - pathology
Neoplastic Stem Cells - radiation effects
Physiological aspects
Radiation Tolerance - genetics
Radioresistance
Radiotherapy
Senescence
Therapeutic applications
Tumor cells
Tumor Stem Cell Assay
title HJURP knockdown disrupts clonogenic capacity and increases radiation-induced cell death of glioblastoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HJURP%20knockdown%20disrupts%20clonogenic%20capacity%20and%20increases%20radiation-induced%20cell%20death%20of%20glioblastoma%20cells&rft.jtitle=Cancer%20gene%20therapy&rft.au=Serafim,%20Rodolfo%20B.&rft.date=2020-05-01&rft.volume=27&rft.issue=5&rft.spage=319&rft.epage=329&rft.pages=319-329&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-019-0103-0&rft_dat=%3Cgale_proqu%3EA624441336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404625996&rft_id=info:pmid/31138900&rft_galeid=A624441336&rfr_iscdi=true