Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids
Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-08, Vol.58 (32), p.10909-10913 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10913 |
---|---|
container_issue | 32 |
container_start_page | 10909 |
container_title | Angewandte Chemie International Edition |
container_volume | 58 |
creator | Yoshida, Yukihiro Fujie, Kazuyuki Lim, Dae‐Woon Ikeda, Ryuichi Kitagawa, Hiroshi |
description | Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures ( |
doi_str_mv | 10.1002/anie.201903980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231844468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231844468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qiFBg22VlqZtuJvg6dpYoAhopEImLWI4c-0zqdC6JPdOIHe_QN-yT4DSQSmy68rH8nU_H50foMyVDSgg7M42HISN0RPhIkw_oiEpGM64U_5hqwXmmtKQD9CnGZeK1JvkhGnBKBWGEH6H1Xb-C4NvGWzxuG9fbLl1w-wsCNvjRO8D3UCfEdH0AfGuaBWDfpLdr6Ez15_n3LCzMtvsymBo2bfiJJ_UqwKIxHTi88d0PPPmrn_p17108QQelqSKcvp7H6OHy4n78PZvOribj82lmRfpZxnSupZVz58BY4phWwhLKucyNUUw6KTQnQs9LaZkFKJ0QWilgmualVnPCj9G3nXcV2nUPsStqHy1UlWmg7WPBGKdaCJHrhH59hy7bPjRpukTlUoqc5SpRwx1lQxtjgLJYBV-b8FRQUmzDKLZhFPswUsOXV20_r8Ht8bftJ2C0Aza-gqf_6Irzm8nFP_kLInmWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265546267</pqid></control><display><type>article</type><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><source>Access via Wiley Online Library</source><creator>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</creator><creatorcontrib>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</creatorcontrib><description>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (<263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range.
Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903980</identifier><identifier>PMID: 31140203</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conduction ; Conduction heating ; Conductivity ; Conductors ; Confined spaces ; Electrochemistry ; Electrolytes ; Ionic liquids ; Ions ; Low temperature ; mesopores ; Metal-organic frameworks ; Metals ; Molten salt electrolytes ; Solid electrolytes ; superionic conductors ; Temperature ; Temperature effects ; Thermal conductivity ; X-ray diffraction</subject><ispartof>Angewandte Chemie International Edition, 2019-08, Vol.58 (32), p.10909-10913</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</citedby><cites>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</cites><orcidid>0000-0003-4630-9559 ; 0000-0001-6955-3015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201903980$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201903980$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31140203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yukihiro</creatorcontrib><creatorcontrib>Fujie, Kazuyuki</creatorcontrib><creatorcontrib>Lim, Dae‐Woon</creatorcontrib><creatorcontrib>Ikeda, Ryuichi</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (<263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range.
Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</description><subject>Conduction</subject><subject>Conduction heating</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Confined spaces</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Low temperature</subject><subject>mesopores</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Molten salt electrolytes</subject><subject>Solid electrolytes</subject><subject>superionic conductors</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>X-ray diffraction</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhq2qiFBg22VlqZtuJvg6dpYoAhopEImLWI4c-0zqdC6JPdOIHe_QN-yT4DSQSmy68rH8nU_H50foMyVDSgg7M42HISN0RPhIkw_oiEpGM64U_5hqwXmmtKQD9CnGZeK1JvkhGnBKBWGEH6H1Xb-C4NvGWzxuG9fbLl1w-wsCNvjRO8D3UCfEdH0AfGuaBWDfpLdr6Ez15_n3LCzMtvsymBo2bfiJJ_UqwKIxHTi88d0PPPmrn_p17108QQelqSKcvp7H6OHy4n78PZvOribj82lmRfpZxnSupZVz58BY4phWwhLKucyNUUw6KTQnQs9LaZkFKJ0QWilgmualVnPCj9G3nXcV2nUPsStqHy1UlWmg7WPBGKdaCJHrhH59hy7bPjRpukTlUoqc5SpRwx1lQxtjgLJYBV-b8FRQUmzDKLZhFPswUsOXV20_r8Ht8bftJ2C0Aza-gqf_6Irzm8nFP_kLInmWoQ</recordid><startdate>20190805</startdate><enddate>20190805</enddate><creator>Yoshida, Yukihiro</creator><creator>Fujie, Kazuyuki</creator><creator>Lim, Dae‐Woon</creator><creator>Ikeda, Ryuichi</creator><creator>Kitagawa, Hiroshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4630-9559</orcidid><orcidid>https://orcid.org/0000-0001-6955-3015</orcidid></search><sort><creationdate>20190805</creationdate><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><author>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conduction</topic><topic>Conduction heating</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Confined spaces</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Low temperature</topic><topic>mesopores</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Molten salt electrolytes</topic><topic>Solid electrolytes</topic><topic>superionic conductors</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yukihiro</creatorcontrib><creatorcontrib>Fujie, Kazuyuki</creatorcontrib><creatorcontrib>Lim, Dae‐Woon</creatorcontrib><creatorcontrib>Ikeda, Ryuichi</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yukihiro</au><au>Fujie, Kazuyuki</au><au>Lim, Dae‐Woon</au><au>Ikeda, Ryuichi</au><au>Kitagawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-08-05</date><risdate>2019</risdate><volume>58</volume><issue>32</issue><spage>10909</spage><epage>10913</epage><pages>10909-10913</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (<263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range.
Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31140203</pmid><doi>10.1002/anie.201903980</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4630-9559</orcidid><orcidid>https://orcid.org/0000-0001-6955-3015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2019-08, Vol.58 (32), p.10909-10913 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231844468 |
source | Access via Wiley Online Library |
subjects | Conduction Conduction heating Conductivity Conductors Confined spaces Electrochemistry Electrolytes Ionic liquids Ions Low temperature mesopores Metal-organic frameworks Metals Molten salt electrolytes Solid electrolytes superionic conductors Temperature Temperature effects Thermal conductivity X-ray diffraction |
title | Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superionic%20Conduction%20over%20a%20Wide%20Temperature%20Range%20in%20a%20Metal%E2%80%93Organic%20Framework%20Impregnated%20with%20Ionic%20Liquids&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Yoshida,%20Yukihiro&rft.date=2019-08-05&rft.volume=58&rft.issue=32&rft.spage=10909&rft.epage=10913&rft.pages=10909-10913&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903980&rft_dat=%3Cproquest_cross%3E2231844468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265546267&rft_id=info:pmid/31140203&rfr_iscdi=true |