Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids

Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-08, Vol.58 (32), p.10909-10913
Hauptverfasser: Yoshida, Yukihiro, Fujie, Kazuyuki, Lim, Dae‐Woon, Ikeda, Ryuichi, Kitagawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10913
container_issue 32
container_start_page 10909
container_title Angewandte Chemie International Edition
container_volume 58
creator Yoshida, Yukihiro
Fujie, Kazuyuki
Lim, Dae‐Woon
Ikeda, Ryuichi
Kitagawa, Hiroshi
description Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (
doi_str_mv 10.1002/anie.201903980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231844468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231844468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</originalsourceid><addsrcrecordid>eNqFkctOGzEUhq2qiFBg22VlqZtuJvg6dpYoAhopEImLWI4c-0zqdC6JPdOIHe_QN-yT4DSQSmy68rH8nU_H50foMyVDSgg7M42HISN0RPhIkw_oiEpGM64U_5hqwXmmtKQD9CnGZeK1JvkhGnBKBWGEH6H1Xb-C4NvGWzxuG9fbLl1w-wsCNvjRO8D3UCfEdH0AfGuaBWDfpLdr6Ez15_n3LCzMtvsymBo2bfiJJ_UqwKIxHTi88d0PPPmrn_p17108QQelqSKcvp7H6OHy4n78PZvOribj82lmRfpZxnSupZVz58BY4phWwhLKucyNUUw6KTQnQs9LaZkFKJ0QWilgmualVnPCj9G3nXcV2nUPsStqHy1UlWmg7WPBGKdaCJHrhH59hy7bPjRpukTlUoqc5SpRwx1lQxtjgLJYBV-b8FRQUmzDKLZhFPswUsOXV20_r8Ht8bftJ2C0Aza-gqf_6Irzm8nFP_kLInmWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265546267</pqid></control><display><type>article</type><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><source>Access via Wiley Online Library</source><creator>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</creator><creatorcontrib>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</creatorcontrib><description>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (&lt;263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range. Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903980</identifier><identifier>PMID: 31140203</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Conduction ; Conduction heating ; Conductivity ; Conductors ; Confined spaces ; Electrochemistry ; Electrolytes ; Ionic liquids ; Ions ; Low temperature ; mesopores ; Metal-organic frameworks ; Metals ; Molten salt electrolytes ; Solid electrolytes ; superionic conductors ; Temperature ; Temperature effects ; Thermal conductivity ; X-ray diffraction</subject><ispartof>Angewandte Chemie International Edition, 2019-08, Vol.58 (32), p.10909-10913</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</citedby><cites>FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</cites><orcidid>0000-0003-4630-9559 ; 0000-0001-6955-3015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201903980$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201903980$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31140203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yukihiro</creatorcontrib><creatorcontrib>Fujie, Kazuyuki</creatorcontrib><creatorcontrib>Lim, Dae‐Woon</creatorcontrib><creatorcontrib>Ikeda, Ryuichi</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (&lt;263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range. Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</description><subject>Conduction</subject><subject>Conduction heating</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Confined spaces</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Low temperature</subject><subject>mesopores</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Molten salt electrolytes</subject><subject>Solid electrolytes</subject><subject>superionic conductors</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal conductivity</subject><subject>X-ray diffraction</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEUhq2qiFBg22VlqZtuJvg6dpYoAhopEImLWI4c-0zqdC6JPdOIHe_QN-yT4DSQSmy68rH8nU_H50foMyVDSgg7M42HISN0RPhIkw_oiEpGM64U_5hqwXmmtKQD9CnGZeK1JvkhGnBKBWGEH6H1Xb-C4NvGWzxuG9fbLl1w-wsCNvjRO8D3UCfEdH0AfGuaBWDfpLdr6Ez15_n3LCzMtvsymBo2bfiJJ_UqwKIxHTi88d0PPPmrn_p17108QQelqSKcvp7H6OHy4n78PZvOribj82lmRfpZxnSupZVz58BY4phWwhLKucyNUUw6KTQnQs9LaZkFKJ0QWilgmualVnPCj9G3nXcV2nUPsStqHy1UlWmg7WPBGKdaCJHrhH59hy7bPjRpukTlUoqc5SpRwx1lQxtjgLJYBV-b8FRQUmzDKLZhFPswUsOXV20_r8Ht8bftJ2C0Aza-gqf_6Irzm8nFP_kLInmWoQ</recordid><startdate>20190805</startdate><enddate>20190805</enddate><creator>Yoshida, Yukihiro</creator><creator>Fujie, Kazuyuki</creator><creator>Lim, Dae‐Woon</creator><creator>Ikeda, Ryuichi</creator><creator>Kitagawa, Hiroshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4630-9559</orcidid><orcidid>https://orcid.org/0000-0001-6955-3015</orcidid></search><sort><creationdate>20190805</creationdate><title>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</title><author>Yoshida, Yukihiro ; Fujie, Kazuyuki ; Lim, Dae‐Woon ; Ikeda, Ryuichi ; Kitagawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-28685c5bddeac0d2874c013356aa725d5483048bf5c2ceefd44877e2816f87b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conduction</topic><topic>Conduction heating</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Confined spaces</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Low temperature</topic><topic>mesopores</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Molten salt electrolytes</topic><topic>Solid electrolytes</topic><topic>superionic conductors</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal conductivity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yukihiro</creatorcontrib><creatorcontrib>Fujie, Kazuyuki</creatorcontrib><creatorcontrib>Lim, Dae‐Woon</creatorcontrib><creatorcontrib>Ikeda, Ryuichi</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yukihiro</au><au>Fujie, Kazuyuki</au><au>Lim, Dae‐Woon</au><au>Ikeda, Ryuichi</au><au>Kitagawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-08-05</date><risdate>2019</risdate><volume>58</volume><issue>32</issue><spage>10909</spage><epage>10913</epage><pages>10909-10913</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10−3 S cm−1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10−2 S cm−1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (&lt;263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range. Super IL‐MOF: An unprecedented solid‐state superionic conductor was obtained by incorporating an ionic liquid (IL) into a mesoporous metal–organic framework (MOF). Because ILs occupying the core of mesopores behave as bulk, the hybrid shows the highest room‐temperature conductivity (4.4×10−3 S cm−1) among the IL‐incorporated MOF hybrids reported to date.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31140203</pmid><doi>10.1002/anie.201903980</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4630-9559</orcidid><orcidid>https://orcid.org/0000-0001-6955-3015</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2019-08, Vol.58 (32), p.10909-10913
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2231844468
source Access via Wiley Online Library
subjects Conduction
Conduction heating
Conductivity
Conductors
Confined spaces
Electrochemistry
Electrolytes
Ionic liquids
Ions
Low temperature
mesopores
Metal-organic frameworks
Metals
Molten salt electrolytes
Solid electrolytes
superionic conductors
Temperature
Temperature effects
Thermal conductivity
X-ray diffraction
title Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superionic%20Conduction%20over%20a%20Wide%20Temperature%20Range%20in%20a%20Metal%E2%80%93Organic%20Framework%20Impregnated%20with%20Ionic%20Liquids&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Yoshida,%20Yukihiro&rft.date=2019-08-05&rft.volume=58&rft.issue=32&rft.spage=10909&rft.epage=10913&rft.pages=10909-10913&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903980&rft_dat=%3Cproquest_cross%3E2231844468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265546267&rft_id=info:pmid/31140203&rfr_iscdi=true