Vertical oscillations in a viscous and thermally conducting isothermal atmosphere

The presence of dissipation in an isothermal atmosphere may cause upwardpropagating small amplitude waves to be reflected downward. For an atmosphere with small dynamic viscosity μ this was demonstrated in Yanowitch (1967b); this will be referred to as case II. Here two problems will be investigated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1974-11, Vol.66 (2), p.273-288
Hauptverfasser: Lyons, Patrick, Yanowitch, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 2
container_start_page 273
container_title Journal of fluid mechanics
container_volume 66
creator Lyons, Patrick
Yanowitch, Michael
description The presence of dissipation in an isothermal atmosphere may cause upwardpropagating small amplitude waves to be reflected downward. For an atmosphere with small dynamic viscosity μ this was demonstrated in Yanowitch (1967b); this will be referred to as case II. Here two problems will be investigated: (i) a thermally conducting atmosphere with small conductivity k (case III) and (ii) a viscous and thermally conducting atmosphere with small k and μ, and a small ratio μ/k, i.e. small Prandtl number (case IV). It will be shown that the validity of the model in case III is questionable. The solution for case IV is determined from the conditions that the average rate of energy dissipation and of entropy increase in a column of fluid be finite, but a radiation condition is required in case III. The solution for case III does not approximate the one for case IV uniformly, and the reflexion coefficient for case IV does not tend to the one for case III as the Prandtl number Pr → 0, but varies periodically with log Pr. Numerical results show that when the Prandtl number is not small the reflexion coefficient can be approximated by the asymptotic value obtained from case II.
doi_str_mv 10.1017/S0022112074000206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22296189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112074000206</cupid><sourcerecordid>22296189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7c2f6f85adc1ace088218c3dd020aef67307ce54b356e6e8807bc3ea8803e6fb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPOJW8CPxE6OqILyqIQqCgculuNsiksSFztB9O9x1YoLEqd9zezODkLnlFxSQuXVMyGMUcqITElMiThAI5qKIpEizQ7RaDtOtvNjdBLCihDKSSFHaP4KvrdGN9gFY5tG99Z1AdsOa_xlg3FDwLqrcP8OvtVNs8HGddVgetstsQ1u38e6b11YxwJO0VGtmwBn-zhGL7c3i8ldMnua3k-uZ4nhmegTaVgt6jzTlaHaAMlzRnPDqyqK11ALyYk0kKVlRIOAPCeyNBx0TDiIuuRjdLHbu_buc4DQqzbqhfhCB1G1YowVguZFBNId0HgXgodarb1ttd8oStTWPPXHvMhJdhwbevj-JWj_oaIymSkxnSu-mL2x_OFRZRHP9zd0W3pbLUGt3OC7aMA_V34AuPKBVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22296189</pqid></control><display><type>article</type><title>Vertical oscillations in a viscous and thermally conducting isothermal atmosphere</title><source>Cambridge University Press Journals Complete</source><creator>Lyons, Patrick ; Yanowitch, Michael</creator><creatorcontrib>Lyons, Patrick ; Yanowitch, Michael</creatorcontrib><description>The presence of dissipation in an isothermal atmosphere may cause upwardpropagating small amplitude waves to be reflected downward. For an atmosphere with small dynamic viscosity μ this was demonstrated in Yanowitch (1967b); this will be referred to as case II. Here two problems will be investigated: (i) a thermally conducting atmosphere with small conductivity k (case III) and (ii) a viscous and thermally conducting atmosphere with small k and μ, and a small ratio μ/k, i.e. small Prandtl number (case IV). It will be shown that the validity of the model in case III is questionable. The solution for case IV is determined from the conditions that the average rate of energy dissipation and of entropy increase in a column of fluid be finite, but a radiation condition is required in case III. The solution for case III does not approximate the one for case IV uniformly, and the reflexion coefficient for case IV does not tend to the one for case III as the Prandtl number Pr → 0, but varies periodically with log Pr. Numerical results show that when the Prandtl number is not small the reflexion coefficient can be approximated by the asymptotic value obtained from case II.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112074000206</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of fluid mechanics, 1974-11, Vol.66 (2), p.273-288</ispartof><rights>1974 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7c2f6f85adc1ace088218c3dd020aef67307ce54b356e6e8807bc3ea8803e6fb3</citedby><cites>FETCH-LOGICAL-c356t-7c2f6f85adc1ace088218c3dd020aef67307ce54b356e6e8807bc3ea8803e6fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112074000206/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Lyons, Patrick</creatorcontrib><creatorcontrib>Yanowitch, Michael</creatorcontrib><title>Vertical oscillations in a viscous and thermally conducting isothermal atmosphere</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The presence of dissipation in an isothermal atmosphere may cause upwardpropagating small amplitude waves to be reflected downward. For an atmosphere with small dynamic viscosity μ this was demonstrated in Yanowitch (1967b); this will be referred to as case II. Here two problems will be investigated: (i) a thermally conducting atmosphere with small conductivity k (case III) and (ii) a viscous and thermally conducting atmosphere with small k and μ, and a small ratio μ/k, i.e. small Prandtl number (case IV). It will be shown that the validity of the model in case III is questionable. The solution for case IV is determined from the conditions that the average rate of energy dissipation and of entropy increase in a column of fluid be finite, but a radiation condition is required in case III. The solution for case III does not approximate the one for case IV uniformly, and the reflexion coefficient for case IV does not tend to the one for case III as the Prandtl number Pr → 0, but varies periodically with log Pr. Numerical results show that when the Prandtl number is not small the reflexion coefficient can be approximated by the asymptotic value obtained from case II.</description><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPOJW8CPxE6OqILyqIQqCgculuNsiksSFztB9O9x1YoLEqd9zezODkLnlFxSQuXVMyGMUcqITElMiThAI5qKIpEizQ7RaDtOtvNjdBLCihDKSSFHaP4KvrdGN9gFY5tG99Z1AdsOa_xlg3FDwLqrcP8OvtVNs8HGddVgetstsQ1u38e6b11YxwJO0VGtmwBn-zhGL7c3i8ldMnua3k-uZ4nhmegTaVgt6jzTlaHaAMlzRnPDqyqK11ALyYk0kKVlRIOAPCeyNBx0TDiIuuRjdLHbu_buc4DQqzbqhfhCB1G1YowVguZFBNId0HgXgodarb1ttd8oStTWPPXHvMhJdhwbevj-JWj_oaIymSkxnSu-mL2x_OFRZRHP9zd0W3pbLUGt3OC7aMA_V34AuPKBVg</recordid><startdate>19741106</startdate><enddate>19741106</enddate><creator>Lyons, Patrick</creator><creator>Yanowitch, Michael</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19741106</creationdate><title>Vertical oscillations in a viscous and thermally conducting isothermal atmosphere</title><author>Lyons, Patrick ; Yanowitch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7c2f6f85adc1ace088218c3dd020aef67307ce54b356e6e8807bc3ea8803e6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, Patrick</creatorcontrib><creatorcontrib>Yanowitch, Michael</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, Patrick</au><au>Yanowitch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical oscillations in a viscous and thermally conducting isothermal atmosphere</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1974-11-06</date><risdate>1974</risdate><volume>66</volume><issue>2</issue><spage>273</spage><epage>288</epage><pages>273-288</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The presence of dissipation in an isothermal atmosphere may cause upwardpropagating small amplitude waves to be reflected downward. For an atmosphere with small dynamic viscosity μ this was demonstrated in Yanowitch (1967b); this will be referred to as case II. Here two problems will be investigated: (i) a thermally conducting atmosphere with small conductivity k (case III) and (ii) a viscous and thermally conducting atmosphere with small k and μ, and a small ratio μ/k, i.e. small Prandtl number (case IV). It will be shown that the validity of the model in case III is questionable. The solution for case IV is determined from the conditions that the average rate of energy dissipation and of entropy increase in a column of fluid be finite, but a radiation condition is required in case III. The solution for case III does not approximate the one for case IV uniformly, and the reflexion coefficient for case IV does not tend to the one for case III as the Prandtl number Pr → 0, but varies periodically with log Pr. Numerical results show that when the Prandtl number is not small the reflexion coefficient can be approximated by the asymptotic value obtained from case II.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112074000206</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1974-11, Vol.66 (2), p.273-288
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_22296189
source Cambridge University Press Journals Complete
title Vertical oscillations in a viscous and thermally conducting isothermal atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20oscillations%20in%20a%20viscous%20and%20thermally%20conducting%20isothermal%20atmosphere&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Lyons,%20Patrick&rft.date=1974-11-06&rft.volume=66&rft.issue=2&rft.spage=273&rft.epage=288&rft.pages=273-288&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/S0022112074000206&rft_dat=%3Cproquest_cross%3E22296189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22296189&rft_id=info:pmid/&rft_cupid=10_1017_S0022112074000206&rfr_iscdi=true