Structural basis for eIF2B inhibition in integrated stress response

A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the rib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6439), p.495-499
Hauptverfasser: Kashiwagi, Kazuhiro, Yokoyama, Takeshi, Nishimoto, Madoka, Takahashi, Mari, Sakamoto, Ayako, Yonemochi, Mayumi, Shirouzu, Mikako, Ito, Takuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 6439
container_start_page 495
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Kashiwagi, Kazuhiro
Yokoyama, Takeshi
Nishimoto, Madoka
Takahashi, Mari
Sakamoto, Ayako
Yonemochi, Mayumi
Shirouzu, Mikako
Ito, Takuhiro
description A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5′-triphosphate–dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo–electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.
doi_str_mv 10.1126/science.aaw4104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2229239616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649387</jstor_id><sourcerecordid>26649387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3694-cfca4475d33363aac19f6521d4342b4d82ae33ae0382a79291d2183f238097ed3</originalsourceid><addsrcrecordid>eNpd0EFLwzAUB_AgipvTsyel4MVLt-S9NG2OOpwOBh7Uc0nTVDu2ZiYp4rc3srqDEJIH75fH40_IJaNTxkDMvG5Np81UqS_OKD8iY0ZllkqgeEzGlKJIC5pnI3Lm_ZrS2JN4SkYYbcEljMn8Jbheh96pTVIp3_qksS4xywXcJ2330VZtaG0Xy3iCeXcqmDrxwRnvk3jtbOfNOTlp1Mabi-GdkLfFw-v8KV09Py7nd6tUo5A81Y1WnOdZjYgCldJMNiIDVnPkUPG6AGUQlaEYq1yCZDWwAhvAgsrc1Dght_u5O2c_e-NDuW29NpuN6oztfQkAElAKJiK9-UfXtndd3C4qJinQAvOoZnulnfXemabcuXar3HfJaPmbbznkWw75xh_Xw9y-2pr64P8CjeBqD9Y-WHfogxBcYpHjD8rngEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219020837</pqid></control><display><type>article</type><title>Structural basis for eIF2B inhibition in integrated stress response</title><source>American Association for the Advancement of Science</source><creator>Kashiwagi, Kazuhiro ; Yokoyama, Takeshi ; Nishimoto, Madoka ; Takahashi, Mari ; Sakamoto, Ayako ; Yonemochi, Mayumi ; Shirouzu, Mikako ; Ito, Takuhiro</creator><creatorcontrib>Kashiwagi, Kazuhiro ; Yokoyama, Takeshi ; Nishimoto, Madoka ; Takahashi, Mari ; Sakamoto, Ayako ; Yonemochi, Mayumi ; Shirouzu, Mikako ; Ito, Takuhiro</creatorcontrib><description>A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5′-triphosphate–dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo–electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw4104</identifier><identifier>PMID: 31048492</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Brain ; Cellular stress response ; Crystal structure ; Crystallography ; Electron microscopy ; Eukaryotes ; Exchanging ; Gene expression ; Guanine ; Guanine nucleotide exchange factor ; Guanosine ; Head injuries ; Initiation factor eIF-2 ; Kinases ; Locks ; Microscopy ; Neurodegenerative diseases ; Neurological diseases ; Phosphorylation ; Protein biosynthesis ; Protein synthesis ; Stimuli ; Stress ; Stress response ; Therapeutic applications ; Translation ; Traumatic brain injury ; tRNA</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.495-499</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3694-cfca4475d33363aac19f6521d4342b4d82ae33ae0382a79291d2183f238097ed3</citedby><cites>FETCH-LOGICAL-c3694-cfca4475d33363aac19f6521d4342b4d82ae33ae0382a79291d2183f238097ed3</cites><orcidid>0000-0002-0299-9140 ; 0000-0003-3704-5205 ; 0000-0001-6470-5817 ; 0000-0002-7997-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31048492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashiwagi, Kazuhiro</creatorcontrib><creatorcontrib>Yokoyama, Takeshi</creatorcontrib><creatorcontrib>Nishimoto, Madoka</creatorcontrib><creatorcontrib>Takahashi, Mari</creatorcontrib><creatorcontrib>Sakamoto, Ayako</creatorcontrib><creatorcontrib>Yonemochi, Mayumi</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Ito, Takuhiro</creatorcontrib><title>Structural basis for eIF2B inhibition in integrated stress response</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5′-triphosphate–dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo–electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.</description><subject>Brain</subject><subject>Cellular stress response</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electron microscopy</subject><subject>Eukaryotes</subject><subject>Exchanging</subject><subject>Gene expression</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Guanosine</subject><subject>Head injuries</subject><subject>Initiation factor eIF-2</subject><subject>Kinases</subject><subject>Locks</subject><subject>Microscopy</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Stimuli</subject><subject>Stress</subject><subject>Stress response</subject><subject>Therapeutic applications</subject><subject>Translation</subject><subject>Traumatic brain injury</subject><subject>tRNA</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0EFLwzAUB_AgipvTsyel4MVLt-S9NG2OOpwOBh7Uc0nTVDu2ZiYp4rc3srqDEJIH75fH40_IJaNTxkDMvG5Np81UqS_OKD8iY0ZllkqgeEzGlKJIC5pnI3Lm_ZrS2JN4SkYYbcEljMn8Jbheh96pTVIp3_qksS4xywXcJ2330VZtaG0Xy3iCeXcqmDrxwRnvk3jtbOfNOTlp1Mabi-GdkLfFw-v8KV09Py7nd6tUo5A81Y1WnOdZjYgCldJMNiIDVnPkUPG6AGUQlaEYq1yCZDWwAhvAgsrc1Dght_u5O2c_e-NDuW29NpuN6oztfQkAElAKJiK9-UfXtndd3C4qJinQAvOoZnulnfXemabcuXar3HfJaPmbbznkWw75xh_Xw9y-2pr64P8CjeBqD9Y-WHfogxBcYpHjD8rngEg</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Kashiwagi, Kazuhiro</creator><creator>Yokoyama, Takeshi</creator><creator>Nishimoto, Madoka</creator><creator>Takahashi, Mari</creator><creator>Sakamoto, Ayako</creator><creator>Yonemochi, Mayumi</creator><creator>Shirouzu, Mikako</creator><creator>Ito, Takuhiro</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0299-9140</orcidid><orcidid>https://orcid.org/0000-0003-3704-5205</orcidid><orcidid>https://orcid.org/0000-0001-6470-5817</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid></search><sort><creationdate>20190503</creationdate><title>Structural basis for eIF2B inhibition in integrated stress response</title><author>Kashiwagi, Kazuhiro ; Yokoyama, Takeshi ; Nishimoto, Madoka ; Takahashi, Mari ; Sakamoto, Ayako ; Yonemochi, Mayumi ; Shirouzu, Mikako ; Ito, Takuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3694-cfca4475d33363aac19f6521d4342b4d82ae33ae0382a79291d2183f238097ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brain</topic><topic>Cellular stress response</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electron microscopy</topic><topic>Eukaryotes</topic><topic>Exchanging</topic><topic>Gene expression</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Guanosine</topic><topic>Head injuries</topic><topic>Initiation factor eIF-2</topic><topic>Kinases</topic><topic>Locks</topic><topic>Microscopy</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Stimuli</topic><topic>Stress</topic><topic>Stress response</topic><topic>Therapeutic applications</topic><topic>Translation</topic><topic>Traumatic brain injury</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashiwagi, Kazuhiro</creatorcontrib><creatorcontrib>Yokoyama, Takeshi</creatorcontrib><creatorcontrib>Nishimoto, Madoka</creatorcontrib><creatorcontrib>Takahashi, Mari</creatorcontrib><creatorcontrib>Sakamoto, Ayako</creatorcontrib><creatorcontrib>Yonemochi, Mayumi</creatorcontrib><creatorcontrib>Shirouzu, Mikako</creatorcontrib><creatorcontrib>Ito, Takuhiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashiwagi, Kazuhiro</au><au>Yokoyama, Takeshi</au><au>Nishimoto, Madoka</au><au>Takahashi, Mari</au><au>Sakamoto, Ayako</au><au>Yonemochi, Mayumi</au><au>Shirouzu, Mikako</au><au>Ito, Takuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for eIF2B inhibition in integrated stress response</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>364</volume><issue>6439</issue><spage>495</spage><epage>499</epage><pages>495-499</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A core event in the integrated stress response, an adaptive pathway common to all eukaryotic cells in response to various stress stimuli, is the phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Normally, unphosphorylated eIF2 transfers the methionylated initiator tRNA to the ribosome in a guanosine 5′-triphosphate–dependent manner. By contrast, phosphorylated eIF2 inhibits its specific guanine nucleotide exchange factor, eIF2B. To elucidate how the eIF2 phosphorylation status regulates the eIF2B activity, we determined cryo–electron microscopic and crystallographic structures of eIF2B in complex with unphosphorylated or phosphorylated eIF2. The unphosphorylated and phosphorylated forms of eIF2 bind to eIF2B in completely different manners: the nucleotide exchange-active and -inactive modes, respectively. These structures explain how phosphorylated eIF2 dominantly inhibits the nucleotide exchange activity of eIF2B.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31048492</pmid><doi>10.1126/science.aaw4104</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0299-9140</orcidid><orcidid>https://orcid.org/0000-0003-3704-5205</orcidid><orcidid>https://orcid.org/0000-0001-6470-5817</orcidid><orcidid>https://orcid.org/0000-0002-7997-2149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.495-499
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2229239616
source American Association for the Advancement of Science
subjects Brain
Cellular stress response
Crystal structure
Crystallography
Electron microscopy
Eukaryotes
Exchanging
Gene expression
Guanine
Guanine nucleotide exchange factor
Guanosine
Head injuries
Initiation factor eIF-2
Kinases
Locks
Microscopy
Neurodegenerative diseases
Neurological diseases
Phosphorylation
Protein biosynthesis
Protein synthesis
Stimuli
Stress
Stress response
Therapeutic applications
Translation
Traumatic brain injury
tRNA
title Structural basis for eIF2B inhibition in integrated stress response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20eIF2B%20inhibition%20in%20integrated%20stress%20response&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kashiwagi,%20Kazuhiro&rft.date=2019-05-03&rft.volume=364&rft.issue=6439&rft.spage=495&rft.epage=499&rft.pages=495-499&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw4104&rft_dat=%3Cjstor_proqu%3E26649387%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219020837&rft_id=info:pmid/31048492&rft_jstor_id=26649387&rfr_iscdi=true