Clustering preference data in the presence of response‐style bias
Preference data, such as Likert scale data, are often obtained in questionnaire‐based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's syste...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2019-11, Vol.72 (3), p.401-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 425 |
---|---|
container_issue | 3 |
container_start_page | 401 |
container_title | British journal of mathematical & statistical psychology |
container_volume | 72 |
creator | Takagishi, Mariko Velden, Michel Yadohisa, Hiroshi |
description | Preference data, such as Likert scale data, are often obtained in questionnaire‐based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's systematic response tendencies irrespective of the item content. For example, some respondents may tend to select ratings at the ends of the scale, which is called an ‘extreme response style’. A cluster of respondents with an extreme response style can be mistakenly identified as a content‐based cluster. To address this problem, we propose a novel method of clustering respondents based on their indicated preferences for a set of items while correcting for response‐style bias. We first introduce a new framework to detect, and correct for, response styles by generalizing the definition of response styles used in constrained dual scaling. We then simultaneously correct for response styles and perform a cluster analysis based on the corrected preference data. A simulation study shows that the proposed method yields better clustering accuracy than the existing methods do. We apply the method to empirical data from four different countries concerning social values. |
doi_str_mv | 10.1111/bmsp.12170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2229239541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229239541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4230-1a8faffaeef4a7b5ee823530d49cffa777d826f8c07cbcaf79952302349dcc523</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRnHF04wdIwI0IGfuV6fRSgy8YUVDXTadTrRnyMp0gs_MT_Ea_xJ7J6MKFtanicupSdRE6JHhKfJ2lpWumhBKBt9CYYs7DmBGxjcYYYxESgukI7Tm3wJjQCM920YgRzKXkdIySpOhdB21evQRNCxZaqAwEme50kFdB9wor2a3F2gZ-bOrKwdfHp-uWBQRprt0-2rG6cHCw6RP0fHX5lNyE8_vr2-R8HhpOGQ6Jjq22VgNYrkUaAcSURQxnXBovCyGymM5sbLAwqdFWSBn5Pcq4zIzx4wSdDL5NW7_14DpV5s5AUegK6t4pSqmkTEacePT4D7qo-7by1ynKCItjScXMU6cDZdraOf-9atq81O1SEaxW0apVtGodrYePNpZ9WkL2i_5k6QEyAO95Act_rNTF3ePDYPoNJ_OEQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313889276</pqid></control><display><type>article</type><title>Clustering preference data in the presence of response‐style bias</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Takagishi, Mariko ; Velden, Michel ; Yadohisa, Hiroshi</creator><creatorcontrib>Takagishi, Mariko ; Velden, Michel ; Yadohisa, Hiroshi</creatorcontrib><description>Preference data, such as Likert scale data, are often obtained in questionnaire‐based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's systematic response tendencies irrespective of the item content. For example, some respondents may tend to select ratings at the ends of the scale, which is called an ‘extreme response style’. A cluster of respondents with an extreme response style can be mistakenly identified as a content‐based cluster. To address this problem, we propose a novel method of clustering respondents based on their indicated preferences for a set of items while correcting for response‐style bias. We first introduce a new framework to detect, and correct for, response styles by generalizing the definition of response styles used in constrained dual scaling. We then simultaneously correct for response styles and perform a cluster analysis based on the corrected preference data. A simulation study shows that the proposed method yields better clustering accuracy than the existing methods do. We apply the method to empirical data from four different countries concerning social values.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12170</identifier><identifier>PMID: 31049942</identifier><language>eng</language><publisher>England: British Psychological Society</publisher><subject>Bias ; categorical data ; Cluster Analysis ; Clustering ; constraint least squares ; Empirical analysis ; k‐means ; preference data ; Preferences ; Psychology, Social ; Research - statistics & numerical data ; Research Design ; response style ; smoothing ; splines ; Surveys and Questionnaires</subject><ispartof>British journal of mathematical & statistical psychology, 2019-11, Vol.72 (3), p.401-425</ispartof><rights>2019 The British Psychological Society</rights><rights>2019 The British Psychological Society.</rights><rights>Copyright © 2019 The British Psychological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4230-1a8faffaeef4a7b5ee823530d49cffa777d826f8c07cbcaf79952302349dcc523</citedby><cites>FETCH-LOGICAL-c4230-1a8faffaeef4a7b5ee823530d49cffa777d826f8c07cbcaf79952302349dcc523</cites><orcidid>0000-0002-2984-8991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31049942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagishi, Mariko</creatorcontrib><creatorcontrib>Velden, Michel</creatorcontrib><creatorcontrib>Yadohisa, Hiroshi</creatorcontrib><title>Clustering preference data in the presence of response‐style bias</title><title>British journal of mathematical & statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Preference data, such as Likert scale data, are often obtained in questionnaire‐based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's systematic response tendencies irrespective of the item content. For example, some respondents may tend to select ratings at the ends of the scale, which is called an ‘extreme response style’. A cluster of respondents with an extreme response style can be mistakenly identified as a content‐based cluster. To address this problem, we propose a novel method of clustering respondents based on their indicated preferences for a set of items while correcting for response‐style bias. We first introduce a new framework to detect, and correct for, response styles by generalizing the definition of response styles used in constrained dual scaling. We then simultaneously correct for response styles and perform a cluster analysis based on the corrected preference data. A simulation study shows that the proposed method yields better clustering accuracy than the existing methods do. We apply the method to empirical data from four different countries concerning social values.</description><subject>Bias</subject><subject>categorical data</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>constraint least squares</subject><subject>Empirical analysis</subject><subject>k‐means</subject><subject>preference data</subject><subject>Preferences</subject><subject>Psychology, Social</subject><subject>Research - statistics & numerical data</subject><subject>Research Design</subject><subject>response style</subject><subject>smoothing</subject><subject>splines</subject><subject>Surveys and Questionnaires</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxEAQRRtRnHF04wdIwI0IGfuV6fRSgy8YUVDXTadTrRnyMp0gs_MT_Ea_xJ7J6MKFtanicupSdRE6JHhKfJ2lpWumhBKBt9CYYs7DmBGxjcYYYxESgukI7Tm3wJjQCM920YgRzKXkdIySpOhdB21evQRNCxZaqAwEme50kFdB9wor2a3F2gZ-bOrKwdfHp-uWBQRprt0-2rG6cHCw6RP0fHX5lNyE8_vr2-R8HhpOGQ6Jjq22VgNYrkUaAcSURQxnXBovCyGymM5sbLAwqdFWSBn5Pcq4zIzx4wSdDL5NW7_14DpV5s5AUegK6t4pSqmkTEacePT4D7qo-7by1ynKCItjScXMU6cDZdraOf-9atq81O1SEaxW0apVtGodrYePNpZ9WkL2i_5k6QEyAO95Act_rNTF3ePDYPoNJ_OEQw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Takagishi, Mariko</creator><creator>Velden, Michel</creator><creator>Yadohisa, Hiroshi</creator><general>British Psychological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2984-8991</orcidid></search><sort><creationdate>201911</creationdate><title>Clustering preference data in the presence of response‐style bias</title><author>Takagishi, Mariko ; Velden, Michel ; Yadohisa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4230-1a8faffaeef4a7b5ee823530d49cffa777d826f8c07cbcaf79952302349dcc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>categorical data</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>constraint least squares</topic><topic>Empirical analysis</topic><topic>k‐means</topic><topic>preference data</topic><topic>Preferences</topic><topic>Psychology, Social</topic><topic>Research - statistics & numerical data</topic><topic>Research Design</topic><topic>response style</topic><topic>smoothing</topic><topic>splines</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagishi, Mariko</creatorcontrib><creatorcontrib>Velden, Michel</creatorcontrib><creatorcontrib>Yadohisa, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical & statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagishi, Mariko</au><au>Velden, Michel</au><au>Yadohisa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering preference data in the presence of response‐style bias</atitle><jtitle>British journal of mathematical & statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2019-11</date><risdate>2019</risdate><volume>72</volume><issue>3</issue><spage>401</spage><epage>425</epage><pages>401-425</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>Preference data, such as Likert scale data, are often obtained in questionnaire‐based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's systematic response tendencies irrespective of the item content. For example, some respondents may tend to select ratings at the ends of the scale, which is called an ‘extreme response style’. A cluster of respondents with an extreme response style can be mistakenly identified as a content‐based cluster. To address this problem, we propose a novel method of clustering respondents based on their indicated preferences for a set of items while correcting for response‐style bias. We first introduce a new framework to detect, and correct for, response styles by generalizing the definition of response styles used in constrained dual scaling. We then simultaneously correct for response styles and perform a cluster analysis based on the corrected preference data. A simulation study shows that the proposed method yields better clustering accuracy than the existing methods do. We apply the method to empirical data from four different countries concerning social values.</abstract><cop>England</cop><pub>British Psychological Society</pub><pmid>31049942</pmid><doi>10.1111/bmsp.12170</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2984-8991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1102 |
ispartof | British journal of mathematical & statistical psychology, 2019-11, Vol.72 (3), p.401-425 |
issn | 0007-1102 2044-8317 |
language | eng |
recordid | cdi_proquest_miscellaneous_2229239541 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bias categorical data Cluster Analysis Clustering constraint least squares Empirical analysis k‐means preference data Preferences Psychology, Social Research - statistics & numerical data Research Design response style smoothing splines Surveys and Questionnaires |
title | Clustering preference data in the presence of response‐style bias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20preference%20data%20in%20the%20presence%20of%20response%E2%80%90style%20bias&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Takagishi,%20Mariko&rft.date=2019-11&rft.volume=72&rft.issue=3&rft.spage=401&rft.epage=425&rft.pages=401-425&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12170&rft_dat=%3Cproquest_cross%3E2229239541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313889276&rft_id=info:pmid/31049942&rfr_iscdi=true |