The modified equation approach to the stability and accuracy analysis of finite-difference methods

The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1974-02, Vol.14 (2), p.159-179
Hauptverfasser: Warming, R.F, Hyett, B.J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 159
container_title Journal of computational physics
container_volume 14
creator Warming, R.F
Hyett, B.J
description The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by the algebraic manipulations described herein. The connection between “heuristic” stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.
doi_str_mv 10.1016/0021-9991(74)90011-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22273570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999174900114</els_id><sourcerecordid>22273570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-19b4ec7f94568ace0c7cb560b73b6c7446d87d194f1ef31b931425ae4ffcd2123</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw85iR6qSZs2m4sg4hcseFnPIZ1M2Ei32U1SYf-9rSsePQ0Dz_sw8xJyydktZ7y5Y6zkhVKKX0txoxjjvBBHZMaZYkUpeXNMZn_IKTlL6ZMxtqjFYkba1RrpJljvPFqKu8FkH3pqttsYDKxpDjSPRMqm9Z3Pe2p6Sw3AEA1Mi-n2yScaHHW-9xmL0eQwYg-jFvM62HROTpzpEl78zjn5eH5aPb4Wy_eXt8eHZQGCVbngqhUI0ilRNwsDyEBCWzeslVXbgBSisQtpuRKOo6t4qyouytqgcA5syctqTq4O3vH03YAp641PgF1negxD0mVZyqqWbATFAYQYUoro9Db6jYl7zZmeCtVTW3pqS0uhfwrVYozdH2I4PvHlMeoEfnrU-oiQtQ3-f8E3nKd-EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22273570</pqid></control><display><type>article</type><title>The modified equation approach to the stability and accuracy analysis of finite-difference methods</title><source>Access via ScienceDirect (Elsevier)</source><creator>Warming, R.F ; Hyett, B.J</creator><creatorcontrib>Warming, R.F ; Hyett, B.J</creatorcontrib><description>The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by the algebraic manipulations described herein. The connection between “heuristic” stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(74)90011-4</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1974-02, Vol.14 (2), p.159-179</ispartof><rights>1974</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-19b4ec7f94568ace0c7cb560b73b6c7446d87d194f1ef31b931425ae4ffcd2123</citedby><cites>FETCH-LOGICAL-c403t-19b4ec7f94568ace0c7cb560b73b6c7446d87d194f1ef31b931425ae4ffcd2123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(74)90011-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Warming, R.F</creatorcontrib><creatorcontrib>Hyett, B.J</creatorcontrib><title>The modified equation approach to the stability and accuracy analysis of finite-difference methods</title><title>Journal of computational physics</title><description>The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by the algebraic manipulations described herein. The connection between “heuristic” stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw85iR6qSZs2m4sg4hcseFnPIZ1M2Ei32U1SYf-9rSsePQ0Dz_sw8xJyydktZ7y5Y6zkhVKKX0txoxjjvBBHZMaZYkUpeXNMZn_IKTlL6ZMxtqjFYkba1RrpJljvPFqKu8FkH3pqttsYDKxpDjSPRMqm9Z3Pe2p6Sw3AEA1Mi-n2yScaHHW-9xmL0eQwYg-jFvM62HROTpzpEl78zjn5eH5aPb4Wy_eXt8eHZQGCVbngqhUI0ilRNwsDyEBCWzeslVXbgBSisQtpuRKOo6t4qyouytqgcA5syctqTq4O3vH03YAp641PgF1negxD0mVZyqqWbATFAYQYUoro9Db6jYl7zZmeCtVTW3pqS0uhfwrVYozdH2I4PvHlMeoEfnrU-oiQtQ3-f8E3nKd-EA</recordid><startdate>19740201</startdate><enddate>19740201</enddate><creator>Warming, R.F</creator><creator>Hyett, B.J</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19740201</creationdate><title>The modified equation approach to the stability and accuracy analysis of finite-difference methods</title><author>Warming, R.F ; Hyett, B.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-19b4ec7f94568ace0c7cb560b73b6c7446d87d194f1ef31b931425ae4ffcd2123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warming, R.F</creatorcontrib><creatorcontrib>Hyett, B.J</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warming, R.F</au><au>Hyett, B.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The modified equation approach to the stability and accuracy analysis of finite-difference methods</atitle><jtitle>Journal of computational physics</jtitle><date>1974-02-01</date><risdate>1974</risdate><volume>14</volume><issue>2</issue><spage>159</spage><epage>179</epage><pages>159-179</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by the algebraic manipulations described herein. The connection between “heuristic” stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(74)90011-4</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1974-02, Vol.14 (2), p.159-179
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_22273570
source Access via ScienceDirect (Elsevier)
title The modified equation approach to the stability and accuracy analysis of finite-difference methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20modified%20equation%20approach%20to%20the%20stability%20and%20accuracy%20analysis%20of%20finite-difference%20methods&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Warming,%20R.F&rft.date=1974-02-01&rft.volume=14&rft.issue=2&rft.spage=159&rft.epage=179&rft.pages=159-179&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(74)90011-4&rft_dat=%3Cproquest_cross%3E22273570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22273570&rft_id=info:pmid/&rft_els_id=0021999174900114&rfr_iscdi=true