Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay
This study analyzed the performance of organophilic clays obtained from the chemical modification of sodium bentonite clay when applied to the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Kinetic curves and equilibrium isotherms were obtained in order to determine time and adsorpt...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2019-06, Vol.26 (18), p.18329-18342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18342 |
---|---|
container_issue | 18 |
container_start_page | 18329 |
container_title | Environmental science and pollution research international |
container_volume | 26 |
creator | de Souza, Fernando Manzotti dos Santos, Onélia Aparecida Andreo Vieira, Melissa Gurgel Adeodato |
description | This study analyzed the performance of organophilic clays obtained from the chemical modification of sodium bentonite clay when applied to the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Kinetic curves and equilibrium isotherms were obtained in order to determine time and adsorption capacity of the material, as well as understand the mechanisms involved in this phenomenon. The results showed that the most predictive kinetic model for experimental data was of pseudo-second order (R
2
> 0.98), and that external mass transfer is the dominant factor in the time of operation. Isotherms were obtained at temperatures of 298, 308, and 318 K, under which the Dubinin-Radushkevich model was shown to have a good fit to data (R
2
> 0.96), according to mathematical adjustments. The maximum adsorption capacity obtained experimentally was 50.36 mg g
−1
, found at a temperature of 298 K, being higher or compatible with other materials reported in the literature. With help of the thermodynamic studies on the process, it was observed that the adsorption of 2,4-D in organophilic clays refers to a spontaneous (ΔG°
ads
|
doi_str_mv | 10.1007/s11356-019-05196-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2218308424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2217187408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ef280afad8f937f4c6a435e76d53acbde5264632de5e9584ad2768f16a74ee493</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhoMo9lr9Ay4k4MaF0XycSSbLUr8KhW4quAu5k5NryszkmsxQ-u-b21sVXLjKgTznPS8PIa8F_yA4Nx-rEKrTjAvLeCesZrdPyEZoAcyAtU_JhlsAJhTACXlR6w3nkltpnpMTJTgIw_mG_DgLNZf9kvJMc6Q_sWzTkAJS-R7YJxpLnqj_tWJeK615XB_AtaZ5R3PZ-TmzKYcUEwa6xXnJc1qQDqO_e0meRT9WfPX4npLvXz5fn39jl1dfL87PLtkAQi4Mo-y5jz700SoTYdAeVIdGh075YRuwkxq0km1A2_XggzS6j0J7A4hg1Sl5d8zdl9x61sVNqQ44jn4-lHZSil7xHiQ09O0_6E1ey9zaHSgjegO8b5Q8UkPJtRaMbl_S5MudE9wdvLujd9e8uwfv7rYtvXmMXrcThj8rv0U3QB2B2r7mHZa_t_8Tew-xFo3_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217187408</pqid></control><display><type>article</type><title>Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay</title><source>SpringerNature Journals</source><creator>de Souza, Fernando Manzotti ; dos Santos, Onélia Aparecida Andreo ; Vieira, Melissa Gurgel Adeodato</creator><creatorcontrib>de Souza, Fernando Manzotti ; dos Santos, Onélia Aparecida Andreo ; Vieira, Melissa Gurgel Adeodato</creatorcontrib><description>This study analyzed the performance of organophilic clays obtained from the chemical modification of sodium bentonite clay when applied to the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Kinetic curves and equilibrium isotherms were obtained in order to determine time and adsorption capacity of the material, as well as understand the mechanisms involved in this phenomenon. The results showed that the most predictive kinetic model for experimental data was of pseudo-second order (R
2
> 0.98), and that external mass transfer is the dominant factor in the time of operation. Isotherms were obtained at temperatures of 298, 308, and 318 K, under which the Dubinin-Radushkevich model was shown to have a good fit to data (R
2
> 0.96), according to mathematical adjustments. The maximum adsorption capacity obtained experimentally was 50.36 mg g
−1
, found at a temperature of 298 K, being higher or compatible with other materials reported in the literature. With help of the thermodynamic studies on the process, it was observed that the adsorption of 2,4-D in organophilic clays refers to a spontaneous (ΔG°
ads
< 0), exothermal (ΔH°
ads
= − 9.99 kJ mol
−1
) process of physical nature. Lastly, it was observed that the adsorbent can be easily regenerated when subjected to eluents such as mixtures containing fractions of ethanol/water (desorption = 95%).</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-019-05196-w</identifier><identifier>PMID: 31041700</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>2,4-D ; Adsorption ; Aquatic Pollution ; Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bentonite ; Chemical modification ; Clay ; Dichlorophenoxyacetic acid ; Earth and Environmental Science ; Ecotoxicology ; Eluents ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Ethanol ; Herbicides ; Isotherms ; Mass transfer ; Organic chemistry ; Research Article ; Sodium ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2019-06, Vol.26 (18), p.18329-18342</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ef280afad8f937f4c6a435e76d53acbde5264632de5e9584ad2768f16a74ee493</citedby><cites>FETCH-LOGICAL-c412t-ef280afad8f937f4c6a435e76d53acbde5264632de5e9584ad2768f16a74ee493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-019-05196-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-019-05196-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31041700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Fernando Manzotti</creatorcontrib><creatorcontrib>dos Santos, Onélia Aparecida Andreo</creatorcontrib><creatorcontrib>Vieira, Melissa Gurgel Adeodato</creatorcontrib><title>Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>This study analyzed the performance of organophilic clays obtained from the chemical modification of sodium bentonite clay when applied to the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Kinetic curves and equilibrium isotherms were obtained in order to determine time and adsorption capacity of the material, as well as understand the mechanisms involved in this phenomenon. The results showed that the most predictive kinetic model for experimental data was of pseudo-second order (R
2
> 0.98), and that external mass transfer is the dominant factor in the time of operation. Isotherms were obtained at temperatures of 298, 308, and 318 K, under which the Dubinin-Radushkevich model was shown to have a good fit to data (R
2
> 0.96), according to mathematical adjustments. The maximum adsorption capacity obtained experimentally was 50.36 mg g
−1
, found at a temperature of 298 K, being higher or compatible with other materials reported in the literature. With help of the thermodynamic studies on the process, it was observed that the adsorption of 2,4-D in organophilic clays refers to a spontaneous (ΔG°
ads
< 0), exothermal (ΔH°
ads
= − 9.99 kJ mol
−1
) process of physical nature. Lastly, it was observed that the adsorbent can be easily regenerated when subjected to eluents such as mixtures containing fractions of ethanol/water (desorption = 95%).</description><subject>2,4-D</subject><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bentonite</subject><subject>Chemical modification</subject><subject>Clay</subject><subject>Dichlorophenoxyacetic acid</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Eluents</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Ethanol</subject><subject>Herbicides</subject><subject>Isotherms</subject><subject>Mass transfer</subject><subject>Organic chemistry</subject><subject>Research Article</subject><subject>Sodium</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1rFTEUhoMo9lr9Ay4k4MaF0XycSSbLUr8KhW4quAu5k5NryszkmsxQ-u-b21sVXLjKgTznPS8PIa8F_yA4Nx-rEKrTjAvLeCesZrdPyEZoAcyAtU_JhlsAJhTACXlR6w3nkltpnpMTJTgIw_mG_DgLNZf9kvJMc6Q_sWzTkAJS-R7YJxpLnqj_tWJeK615XB_AtaZ5R3PZ-TmzKYcUEwa6xXnJc1qQDqO_e0meRT9WfPX4npLvXz5fn39jl1dfL87PLtkAQi4Mo-y5jz700SoTYdAeVIdGh075YRuwkxq0km1A2_XggzS6j0J7A4hg1Sl5d8zdl9x61sVNqQ44jn4-lHZSil7xHiQ09O0_6E1ey9zaHSgjegO8b5Q8UkPJtRaMbl_S5MudE9wdvLujd9e8uwfv7rYtvXmMXrcThj8rv0U3QB2B2r7mHZa_t_8Tew-xFo3_</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>de Souza, Fernando Manzotti</creator><creator>dos Santos, Onélia Aparecida Andreo</creator><creator>Vieira, Melissa Gurgel Adeodato</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190601</creationdate><title>Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay</title><author>de Souza, Fernando Manzotti ; dos Santos, Onélia Aparecida Andreo ; Vieira, Melissa Gurgel Adeodato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ef280afad8f937f4c6a435e76d53acbde5264632de5e9584ad2768f16a74ee493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2,4-D</topic><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bentonite</topic><topic>Chemical modification</topic><topic>Clay</topic><topic>Dichlorophenoxyacetic acid</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Eluents</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Ethanol</topic><topic>Herbicides</topic><topic>Isotherms</topic><topic>Mass transfer</topic><topic>Organic chemistry</topic><topic>Research Article</topic><topic>Sodium</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Fernando Manzotti</creatorcontrib><creatorcontrib>dos Santos, Onélia Aparecida Andreo</creatorcontrib><creatorcontrib>Vieira, Melissa Gurgel Adeodato</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Fernando Manzotti</au><au>dos Santos, Onélia Aparecida Andreo</au><au>Vieira, Melissa Gurgel Adeodato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>18</issue><spage>18329</spage><epage>18342</epage><pages>18329-18342</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>This study analyzed the performance of organophilic clays obtained from the chemical modification of sodium bentonite clay when applied to the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Kinetic curves and equilibrium isotherms were obtained in order to determine time and adsorption capacity of the material, as well as understand the mechanisms involved in this phenomenon. The results showed that the most predictive kinetic model for experimental data was of pseudo-second order (R
2
> 0.98), and that external mass transfer is the dominant factor in the time of operation. Isotherms were obtained at temperatures of 298, 308, and 318 K, under which the Dubinin-Radushkevich model was shown to have a good fit to data (R
2
> 0.96), according to mathematical adjustments. The maximum adsorption capacity obtained experimentally was 50.36 mg g
−1
, found at a temperature of 298 K, being higher or compatible with other materials reported in the literature. With help of the thermodynamic studies on the process, it was observed that the adsorption of 2,4-D in organophilic clays refers to a spontaneous (ΔG°
ads
< 0), exothermal (ΔH°
ads
= − 9.99 kJ mol
−1
) process of physical nature. Lastly, it was observed that the adsorbent can be easily regenerated when subjected to eluents such as mixtures containing fractions of ethanol/water (desorption = 95%).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31041700</pmid><doi>10.1007/s11356-019-05196-w</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2019-06, Vol.26 (18), p.18329-18342 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2218308424 |
source | SpringerNature Journals |
subjects | 2,4-D Adsorption Aquatic Pollution Aqueous solutions Atmospheric Protection/Air Quality Control/Air Pollution Bentonite Chemical modification Clay Dichlorophenoxyacetic acid Earth and Environmental Science Ecotoxicology Eluents Environment Environmental Chemistry Environmental Health Environmental science Ethanol Herbicides Isotherms Mass transfer Organic chemistry Research Article Sodium Waste Water Technology Water Management Water Pollution Control |
title | Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20herbicide%202,4-D%20from%20aqueous%20solution%20using%20organo-modified%20bentonite%20clay&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=de%20Souza,%20Fernando%20Manzotti&rft.date=2019-06-01&rft.volume=26&rft.issue=18&rft.spage=18329&rft.epage=18342&rft.pages=18329-18342&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-019-05196-w&rft_dat=%3Cproquest_cross%3E2217187408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217187408&rft_id=info:pmid/31041700&rfr_iscdi=true |