Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility

Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2019-09, Vol.107 (9), p.1965-1976
Hauptverfasser: dos Anjos, Suzana, Mavropoulos, Elena, Alves, Gutemberg G., Costa, Andrea M., de Alencar Hausen, Moema, Spiegel, Carolina N., Longuinho, Mariana M., Mir, Mirta, Granjeiro, José M., Rossi, Alexandre M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1976
container_issue 9
container_start_page 1965
container_title Journal of biomedical materials research. Part A
container_volume 107
creator dos Anjos, Suzana
Mavropoulos, Elena
Alves, Gutemberg G.
Costa, Andrea M.
de Alencar Hausen, Moema
Spiegel, Carolina N.
Longuinho, Mariana M.
Mir, Mirta
Granjeiro, José M.
Rossi, Alexandre M.
description Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not sufficiently known. This study assessed the impact of exposing pre‐osteoblasts to suspensions with high doses of nCHA nanoparticles with high or low crystallinity. MC3T3‐E1 pre‐osteoblasts were cultured for 1 or 7 days in a culture medium previously exposed to CHA nanoparticles for 1 day. Control groups were produced by centrifugation for removal of bigger nCHA aggregates before exposure. Interaction of nanoparticles with the culture medium drastically changed medium composition, promoting Ca, P, and protein adsorption. Transmission Electron microscopy revealed that exposed cells were able to internalize both materials, which seemed concentrated inside endosomes. No cytotoxicity was observed for both materials, regardless of centrifugation, and the exposure did not induce alterations in the release of pro‐and anti‐inflammatory cytokines. Morphological analysis revealed strong interactions of nCHA aggregates with cell surfaces, however without marked alterations in morphological features and cytoskeleton ultrastructure. The overall in vitro biocompatibility of nCHA materials, regardless of physicochemical characteristics such as crystallinity, encourages further studies on their clinical applications.
doi_str_mv 10.1002/jbm.a.36709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2217493189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256596975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3609-24d4af27ca25f9cbadb4546b6c537139523fac183e5a9e6d154335371fed42983</originalsourceid><addsrcrecordid>eNp90b1u1TAYBmALgWhpO3VHkbogoRz8EzvHY6n4KSpiaWfrs-OoPkrsYDtAmBBXwDVyJTiclqEDkz_Zj17behE6JXhDMKavdnrcwIaJFstH6JBwTutGCv54nRtZMyrFAXqW0q5ggTl9ig4YwYwzLA7Rz8txApOr0FcmLinDMDjv8lKB7-53quS-21V48CHlOJs8R1uOIergIZfxduli-LbABNnlYn01Rfv7x6_CbdADpFw5X31xOYZKu2DCuErthnLVMXrSw5Dsyd16hG7evrm-eF9ffXp3eXF-VRsmsKxp0zXQ09YA5b00Gjrd8EZoYThrCZOcsh4M2TLLQVrRlc8zth71tmuo3LIj9GKfO8XwebYpq9ElY4cBvA1zUpSStpGMbGWhZw_oLszRl9cVxQWXQra8qJd7ZWJIKdpeTdGNEBdFsFqrUaUaBepvNUU_v8uc9Wi7f_a-iwLoHnx1g13-l6U-vP54vk_9A99ZnWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256596975</pqid></control><display><type>article</type><title>Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility</title><source>Wiley Blackwell Single Titles</source><creator>dos Anjos, Suzana ; Mavropoulos, Elena ; Alves, Gutemberg G. ; Costa, Andrea M. ; de Alencar Hausen, Moema ; Spiegel, Carolina N. ; Longuinho, Mariana M. ; Mir, Mirta ; Granjeiro, José M. ; Rossi, Alexandre M.</creator><creatorcontrib>dos Anjos, Suzana ; Mavropoulos, Elena ; Alves, Gutemberg G. ; Costa, Andrea M. ; de Alencar Hausen, Moema ; Spiegel, Carolina N. ; Longuinho, Mariana M. ; Mir, Mirta ; Granjeiro, José M. ; Rossi, Alexandre M.</creatorcontrib><description>Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not sufficiently known. This study assessed the impact of exposing pre‐osteoblasts to suspensions with high doses of nCHA nanoparticles with high or low crystallinity. MC3T3‐E1 pre‐osteoblasts were cultured for 1 or 7 days in a culture medium previously exposed to CHA nanoparticles for 1 day. Control groups were produced by centrifugation for removal of bigger nCHA aggregates before exposure. Interaction of nanoparticles with the culture medium drastically changed medium composition, promoting Ca, P, and protein adsorption. Transmission Electron microscopy revealed that exposed cells were able to internalize both materials, which seemed concentrated inside endosomes. No cytotoxicity was observed for both materials, regardless of centrifugation, and the exposure did not induce alterations in the release of pro‐and anti‐inflammatory cytokines. Morphological analysis revealed strong interactions of nCHA aggregates with cell surfaces, however without marked alterations in morphological features and cytoskeleton ultrastructure. The overall in vitro biocompatibility of nCHA materials, regardless of physicochemical characteristics such as crystallinity, encourages further studies on their clinical applications.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36709</identifier><identifier>PMID: 31035306</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aggregates ; Biocompatibility ; Biological effects ; Biomaterials ; Biomedical materials ; carbonated hydroxiapatite ; Carbonation ; Cell culture ; Centrifugation ; Chemical properties ; Crystal structure ; Crystallinity ; Cytokines ; Cytoskeleton ; Cytotoxicity ; Endosomes ; Exposure ; Hydroxyapatite ; Inflammation ; Morphology ; Nanoparticles ; Nanostructure ; Organic chemistry ; osteoblast ; Osteoblasts ; Protein adsorption ; Surgical implants ; Therapeutic applications ; Tissue engineering ; Toxicity ; Transmission electron microscopy ; Ultrastructure</subject><ispartof>Journal of biomedical materials research. Part A, 2019-09, Vol.107 (9), p.1965-1976</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3609-24d4af27ca25f9cbadb4546b6c537139523fac183e5a9e6d154335371fed42983</citedby><cites>FETCH-LOGICAL-c3609-24d4af27ca25f9cbadb4546b6c537139523fac183e5a9e6d154335371fed42983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36709$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36709$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31035306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Anjos, Suzana</creatorcontrib><creatorcontrib>Mavropoulos, Elena</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Costa, Andrea M.</creatorcontrib><creatorcontrib>de Alencar Hausen, Moema</creatorcontrib><creatorcontrib>Spiegel, Carolina N.</creatorcontrib><creatorcontrib>Longuinho, Mariana M.</creatorcontrib><creatorcontrib>Mir, Mirta</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><creatorcontrib>Rossi, Alexandre M.</creatorcontrib><title>Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not sufficiently known. This study assessed the impact of exposing pre‐osteoblasts to suspensions with high doses of nCHA nanoparticles with high or low crystallinity. MC3T3‐E1 pre‐osteoblasts were cultured for 1 or 7 days in a culture medium previously exposed to CHA nanoparticles for 1 day. Control groups were produced by centrifugation for removal of bigger nCHA aggregates before exposure. Interaction of nanoparticles with the culture medium drastically changed medium composition, promoting Ca, P, and protein adsorption. Transmission Electron microscopy revealed that exposed cells were able to internalize both materials, which seemed concentrated inside endosomes. No cytotoxicity was observed for both materials, regardless of centrifugation, and the exposure did not induce alterations in the release of pro‐and anti‐inflammatory cytokines. Morphological analysis revealed strong interactions of nCHA aggregates with cell surfaces, however without marked alterations in morphological features and cytoskeleton ultrastructure. The overall in vitro biocompatibility of nCHA materials, regardless of physicochemical characteristics such as crystallinity, encourages further studies on their clinical applications.</description><subject>Aggregates</subject><subject>Biocompatibility</subject><subject>Biological effects</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>carbonated hydroxiapatite</subject><subject>Carbonation</subject><subject>Cell culture</subject><subject>Centrifugation</subject><subject>Chemical properties</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Cytokines</subject><subject>Cytoskeleton</subject><subject>Cytotoxicity</subject><subject>Endosomes</subject><subject>Exposure</subject><subject>Hydroxyapatite</subject><subject>Inflammation</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Organic chemistry</subject><subject>osteoblast</subject><subject>Osteoblasts</subject><subject>Protein adsorption</subject><subject>Surgical implants</subject><subject>Therapeutic applications</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90b1u1TAYBmALgWhpO3VHkbogoRz8EzvHY6n4KSpiaWfrs-OoPkrsYDtAmBBXwDVyJTiclqEDkz_Zj17behE6JXhDMKavdnrcwIaJFstH6JBwTutGCv54nRtZMyrFAXqW0q5ggTl9ig4YwYwzLA7Rz8txApOr0FcmLinDMDjv8lKB7-53quS-21V48CHlOJs8R1uOIergIZfxduli-LbABNnlYn01Rfv7x6_CbdADpFw5X31xOYZKu2DCuErthnLVMXrSw5Dsyd16hG7evrm-eF9ffXp3eXF-VRsmsKxp0zXQ09YA5b00Gjrd8EZoYThrCZOcsh4M2TLLQVrRlc8zth71tmuo3LIj9GKfO8XwebYpq9ElY4cBvA1zUpSStpGMbGWhZw_oLszRl9cVxQWXQra8qJd7ZWJIKdpeTdGNEBdFsFqrUaUaBepvNUU_v8uc9Wi7f_a-iwLoHnx1g13-l6U-vP54vk_9A99ZnWs</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>dos Anjos, Suzana</creator><creator>Mavropoulos, Elena</creator><creator>Alves, Gutemberg G.</creator><creator>Costa, Andrea M.</creator><creator>de Alencar Hausen, Moema</creator><creator>Spiegel, Carolina N.</creator><creator>Longuinho, Mariana M.</creator><creator>Mir, Mirta</creator><creator>Granjeiro, José M.</creator><creator>Rossi, Alexandre M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201909</creationdate><title>Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility</title><author>dos Anjos, Suzana ; Mavropoulos, Elena ; Alves, Gutemberg G. ; Costa, Andrea M. ; de Alencar Hausen, Moema ; Spiegel, Carolina N. ; Longuinho, Mariana M. ; Mir, Mirta ; Granjeiro, José M. ; Rossi, Alexandre M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3609-24d4af27ca25f9cbadb4546b6c537139523fac183e5a9e6d154335371fed42983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Biocompatibility</topic><topic>Biological effects</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>carbonated hydroxiapatite</topic><topic>Carbonation</topic><topic>Cell culture</topic><topic>Centrifugation</topic><topic>Chemical properties</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Cytokines</topic><topic>Cytoskeleton</topic><topic>Cytotoxicity</topic><topic>Endosomes</topic><topic>Exposure</topic><topic>Hydroxyapatite</topic><topic>Inflammation</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Organic chemistry</topic><topic>osteoblast</topic><topic>Osteoblasts</topic><topic>Protein adsorption</topic><topic>Surgical implants</topic><topic>Therapeutic applications</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Anjos, Suzana</creatorcontrib><creatorcontrib>Mavropoulos, Elena</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Costa, Andrea M.</creatorcontrib><creatorcontrib>de Alencar Hausen, Moema</creatorcontrib><creatorcontrib>Spiegel, Carolina N.</creatorcontrib><creatorcontrib>Longuinho, Mariana M.</creatorcontrib><creatorcontrib>Mir, Mirta</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><creatorcontrib>Rossi, Alexandre M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Anjos, Suzana</au><au>Mavropoulos, Elena</au><au>Alves, Gutemberg G.</au><au>Costa, Andrea M.</au><au>de Alencar Hausen, Moema</au><au>Spiegel, Carolina N.</au><au>Longuinho, Mariana M.</au><au>Mir, Mirta</au><au>Granjeiro, José M.</au><au>Rossi, Alexandre M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2019-09</date><risdate>2019</risdate><volume>107</volume><issue>9</issue><spage>1965</spage><epage>1976</epage><pages>1965-1976</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not sufficiently known. This study assessed the impact of exposing pre‐osteoblasts to suspensions with high doses of nCHA nanoparticles with high or low crystallinity. MC3T3‐E1 pre‐osteoblasts were cultured for 1 or 7 days in a culture medium previously exposed to CHA nanoparticles for 1 day. Control groups were produced by centrifugation for removal of bigger nCHA aggregates before exposure. Interaction of nanoparticles with the culture medium drastically changed medium composition, promoting Ca, P, and protein adsorption. Transmission Electron microscopy revealed that exposed cells were able to internalize both materials, which seemed concentrated inside endosomes. No cytotoxicity was observed for both materials, regardless of centrifugation, and the exposure did not induce alterations in the release of pro‐and anti‐inflammatory cytokines. Morphological analysis revealed strong interactions of nCHA aggregates with cell surfaces, however without marked alterations in morphological features and cytoskeleton ultrastructure. The overall in vitro biocompatibility of nCHA materials, regardless of physicochemical characteristics such as crystallinity, encourages further studies on their clinical applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31035306</pmid><doi>10.1002/jbm.a.36709</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2019-09, Vol.107 (9), p.1965-1976
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2217493189
source Wiley Blackwell Single Titles
subjects Aggregates
Biocompatibility
Biological effects
Biomaterials
Biomedical materials
carbonated hydroxiapatite
Carbonation
Cell culture
Centrifugation
Chemical properties
Crystal structure
Crystallinity
Cytokines
Cytoskeleton
Cytotoxicity
Endosomes
Exposure
Hydroxyapatite
Inflammation
Morphology
Nanoparticles
Nanostructure
Organic chemistry
osteoblast
Osteoblasts
Protein adsorption
Surgical implants
Therapeutic applications
Tissue engineering
Toxicity
Transmission electron microscopy
Ultrastructure
title Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre‐osteoblast in vitro biocompatibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20crystallinity%20and%20crystal%20size%20of%20nanostructured%20carbonated%20hydroxyapatite%20on%20pre%E2%80%90osteoblast%20in%20vitro%20biocompatibility&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=dos%20Anjos,%20Suzana&rft.date=2019-09&rft.volume=107&rft.issue=9&rft.spage=1965&rft.epage=1976&rft.pages=1965-1976&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36709&rft_dat=%3Cproquest_cross%3E2256596975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256596975&rft_id=info:pmid/31035306&rfr_iscdi=true