Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator
Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the it...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-10, Vol.28 (10), p.4899-4911 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4911 |
---|---|
container_issue | 10 |
container_start_page | 4899 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Caoyuan Li Hong-Bo Xie Xuhui Fan Da Xu, Richard Yi Van Huffel, Sabine Sisson, Scott A. Mengersen, Kerrie |
description | Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods. |
doi_str_mv | 10.1109/TIP.2019.2912292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2217482233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8700607</ieee_id><sourcerecordid>2217482233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d9a8c25f05fa117bdcbd828270d291da232e0cf714231ec9b0913e051497ed7e3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2KqnyUeyUkZKkHesl2xk7W8ZFS2q6EWgRLr5ETT8BL1qZ2cuC_r5fdcujJluf3nub5MfYBYYYI-vNycT0TgHomNAqhxRt2gLrEAqAUe_kOlSoUlnqfHaa0AsCywvk7ti8RZFmiOGCrxdrcE_9KPrjk_D3_YhJZHjz_GfwQOjPkl2dKznh-m-fTYCL_bYaJ-PIhUnoIg93IjLf8diTnzxK_8617cblx6ZFfptGtzRjie_a2N0Oi4915xO6-XS4vfhRXv74vLs6vik7WeiysNnUnqh6q3iCq1natrUUtFNic0hohBUHX51hCInW6BY2SoMoxFVlF8oh92vo-xfBnojQ2a5c6GgbjKUypEQJVWQshZUY__oeuwhR93i5Tcz3XVanrTMGW6mJIKVLfPMUcKT43CM2mhyb30Gx6aHY9ZMnpznhq12RfBf8-PgMnW8AR0eu4VgBzUPIvrcOK7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269695498</pqid></control><display><type>article</type><title>Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Caoyuan Li ; Hong-Bo Xie ; Xuhui Fan ; Da Xu, Richard Yi ; Van Huffel, Sabine ; Sisson, Scott A. ; Mengersen, Kerrie</creator><creatorcontrib>Caoyuan Li ; Hong-Bo Xie ; Xuhui Fan ; Da Xu, Richard Yi ; Van Huffel, Sabine ; Sisson, Scott A. ; Mengersen, Kerrie</creatorcontrib><description>Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2912292</identifier><identifier>PMID: 31034412</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayesian analysis ; Divergence ; Finite impulse response filters ; Image denoising ; Interpolation ; Iterative methods ; Learning systems ; Missing data ; Motion compensation ; Noise ; Noise propagation ; Noise reduction ; noise variance estimation ; Outliers (statistics) ; Regularization ; singular value thresholding ; Statistical inference ; Stein’s unbiased risk estimator ; Training ; variational Bayesian inference ; Video coding</subject><ispartof>IEEE transactions on image processing, 2019-10, Vol.28 (10), p.4899-4911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d9a8c25f05fa117bdcbd828270d291da232e0cf714231ec9b0913e051497ed7e3</citedby><cites>FETCH-LOGICAL-c389t-d9a8c25f05fa117bdcbd828270d291da232e0cf714231ec9b0913e051497ed7e3</cites><orcidid>0000-0002-7739-3047 ; 0000-0003-2080-4762 ; 0000-0001-8625-9168 ; 0000-0001-5939-0996 ; 0000-0002-7558-7200 ; 0000-0001-6600-2664 ; 0000-0001-8943-067X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8700607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8700607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31034412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caoyuan Li</creatorcontrib><creatorcontrib>Hong-Bo Xie</creatorcontrib><creatorcontrib>Xuhui Fan</creatorcontrib><creatorcontrib>Da Xu, Richard Yi</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><creatorcontrib>Sisson, Scott A.</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><title>Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods.</description><subject>Bayesian analysis</subject><subject>Divergence</subject><subject>Finite impulse response filters</subject><subject>Image denoising</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Learning systems</subject><subject>Missing data</subject><subject>Motion compensation</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Noise reduction</subject><subject>noise variance estimation</subject><subject>Outliers (statistics)</subject><subject>Regularization</subject><subject>singular value thresholding</subject><subject>Statistical inference</subject><subject>Stein’s unbiased risk estimator</subject><subject>Training</subject><subject>variational Bayesian inference</subject><subject>Video coding</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1P3DAQxa2KqnyUeyUkZKkHesl2xk7W8ZFS2q6EWgRLr5ETT8BL1qZ2cuC_r5fdcujJluf3nub5MfYBYYYI-vNycT0TgHomNAqhxRt2gLrEAqAUe_kOlSoUlnqfHaa0AsCywvk7ti8RZFmiOGCrxdrcE_9KPrjk_D3_YhJZHjz_GfwQOjPkl2dKznh-m-fTYCL_bYaJ-PIhUnoIg93IjLf8diTnzxK_8617cblx6ZFfptGtzRjie_a2N0Oi4915xO6-XS4vfhRXv74vLs6vik7WeiysNnUnqh6q3iCq1natrUUtFNic0hohBUHX51hCInW6BY2SoMoxFVlF8oh92vo-xfBnojQ2a5c6GgbjKUypEQJVWQshZUY__oeuwhR93i5Tcz3XVanrTMGW6mJIKVLfPMUcKT43CM2mhyb30Gx6aHY9ZMnpznhq12RfBf8-PgMnW8AR0eu4VgBzUPIvrcOK7w</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Caoyuan Li</creator><creator>Hong-Bo Xie</creator><creator>Xuhui Fan</creator><creator>Da Xu, Richard Yi</creator><creator>Van Huffel, Sabine</creator><creator>Sisson, Scott A.</creator><creator>Mengersen, Kerrie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7739-3047</orcidid><orcidid>https://orcid.org/0000-0003-2080-4762</orcidid><orcidid>https://orcid.org/0000-0001-8625-9168</orcidid><orcidid>https://orcid.org/0000-0001-5939-0996</orcidid><orcidid>https://orcid.org/0000-0002-7558-7200</orcidid><orcidid>https://orcid.org/0000-0001-6600-2664</orcidid><orcidid>https://orcid.org/0000-0001-8943-067X</orcidid></search><sort><creationdate>20191001</creationdate><title>Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator</title><author>Caoyuan Li ; Hong-Bo Xie ; Xuhui Fan ; Da Xu, Richard Yi ; Van Huffel, Sabine ; Sisson, Scott A. ; Mengersen, Kerrie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d9a8c25f05fa117bdcbd828270d291da232e0cf714231ec9b0913e051497ed7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Divergence</topic><topic>Finite impulse response filters</topic><topic>Image denoising</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Learning systems</topic><topic>Missing data</topic><topic>Motion compensation</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Noise reduction</topic><topic>noise variance estimation</topic><topic>Outliers (statistics)</topic><topic>Regularization</topic><topic>singular value thresholding</topic><topic>Statistical inference</topic><topic>Stein’s unbiased risk estimator</topic><topic>Training</topic><topic>variational Bayesian inference</topic><topic>Video coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caoyuan Li</creatorcontrib><creatorcontrib>Hong-Bo Xie</creatorcontrib><creatorcontrib>Xuhui Fan</creatorcontrib><creatorcontrib>Da Xu, Richard Yi</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><creatorcontrib>Sisson, Scott A.</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caoyuan Li</au><au>Hong-Bo Xie</au><au>Xuhui Fan</au><au>Da Xu, Richard Yi</au><au>Van Huffel, Sabine</au><au>Sisson, Scott A.</au><au>Mengersen, Kerrie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>28</volume><issue>10</issue><spage>4899</spage><epage>4911</epage><pages>4899-4911</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31034412</pmid><doi>10.1109/TIP.2019.2912292</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7739-3047</orcidid><orcidid>https://orcid.org/0000-0003-2080-4762</orcidid><orcidid>https://orcid.org/0000-0001-8625-9168</orcidid><orcidid>https://orcid.org/0000-0001-5939-0996</orcidid><orcidid>https://orcid.org/0000-0002-7558-7200</orcidid><orcidid>https://orcid.org/0000-0001-6600-2664</orcidid><orcidid>https://orcid.org/0000-0001-8943-067X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-10, Vol.28 (10), p.4899-4911 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2217482233 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian analysis Divergence Finite impulse response filters Image denoising Interpolation Iterative methods Learning systems Missing data Motion compensation Noise Noise propagation Noise reduction noise variance estimation Outliers (statistics) Regularization singular value thresholding Statistical inference Stein’s unbiased risk estimator Training variational Bayesian inference Video coding |
title | Image Denoising Based on Nonlocal Bayesian Singular Value Thresholding and Stein's Unbiased Risk Estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Denoising%20Based%20on%20Nonlocal%20Bayesian%20Singular%20Value%20Thresholding%20and%20Stein's%20Unbiased%20Risk%20Estimator&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Caoyuan%20Li&rft.date=2019-10-01&rft.volume=28&rft.issue=10&rft.spage=4899&rft.epage=4911&rft.pages=4899-4911&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2912292&rft_dat=%3Cproquest_RIE%3E2217482233%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269695498&rft_id=info:pmid/31034412&rft_ieee_id=8700607&rfr_iscdi=true |