Three-dimensional paper based platform for automatically running multiple assays in a single step

Paper based assays are paving the way to automated, simplified, robust and cost-effective point of care testing (POCT). We propose a method for fabricating three dimensional (3D) microfluidic paper based analytical devices (μPADs) via combining thin adhesive films and paper folding, which avoids the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2019-08, Vol.200, p.177-185
Hauptverfasser: Wu, Yupan, Ren, Yukun, Han, Lianhuan, Yan, Yongda, Jiang, Hongyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paper based assays are paving the way to automated, simplified, robust and cost-effective point of care testing (POCT). We propose a method for fabricating three dimensional (3D) microfluidic paper based analytical devices (μPADs) via combining thin adhesive films and paper folding, which avoids the use of cellulose powders and the complex folding sequence and simultaneously permits assays in several layers. To demonstrate the effectiveness of this approach, a 3DμPADs was designed to conduct more assays on a small footprint, allowing dual colorimetric and electrochemical detections. More importantly, we further developed a 3D platform for implementing automated and multiplexed ELISA in parallel, since ELISA, a routine and standard laboratory method, has rarely been used in practical analyses outside of the laboratory. In this configuration, complex and multistep diagnostic assays can be carried out with the addition of the sample and buffer in a simple fashion. Using Troponin I as model, the device showed a broad dynamic range of detection with a detection limit of 0.35 ng/mL. Thus, the developed platforms allow for various assays to be cost-effectively carried out on a single 3D device, showing great potential in an academic setting and point of care testing under resource-poor conditions. [Display omitted] •Based on thin adhesive films and paper folding, 3D paper devices were assembled.•A paper device was developed to allow dual colorimetric and electrochemical detection.•A 3D platform was developed for implementing automated and multiplexed ELISA in parallel.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2019.03.033