Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level

Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 ( ) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2019-06, Vol.476 (11), p.1585-1604
Hauptverfasser: Xin, Yanli, Wang, Yanliang, Zhong, Liang, Shi, Bingbo, Liang, Hui, Han, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1604
container_issue 11
container_start_page 1585
container_title Biochemical journal
container_volume 476
creator Xin, Yanli
Wang, Yanliang
Zhong, Liang
Shi, Bingbo
Liang, Hui
Han, Jianyong
description Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 ( ) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of was characterized as a maintenance factor of mESCs pluripotency. deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers ( , , , and ) decreased, while that of key TE genes ( , , and ) increased. -positive cells emerged in 6-deficient colonies under trophoblast stem cell culture conditions. As a result of 6 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of , as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.
doi_str_mv 10.1042/BCJ20190057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2217471657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2217471657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-aa78495e1f044ea6809ffa09f23d22ea1890f44e9715f17d6eae849cd3adcdbb3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMoun6cvEuOglQnadq0R138RPCgnkuaTNZK2qxJKu5_b5dV8TLD8H5vmHmEHDM4ZyD4xdX8gQOrAQq5RWZMSMgqyattMgNeiqwEzvbIfozvAEyAgF2ylzPIS8mqGfl6dpoXKi9p783oVMJIl24M3dInHPSKejspY0SKfRtWfug0jQl7qtG5SNsVDbhY-7phQfsuef3mBxM65agdB506P1A1GLpwY1LpbRqROvxEd0h2rHIRj376AXm9uX6Z32WPT7f388vHTPOqTplSshJ1gcyCEKjKCmpr1VR4bjhHxaoa7KTUkhWWSVOiwsmgTa6MNm2bH5DTzd5l8B8jxtT0XVwfrwac_mo4Z1JIVhZyQs82qA4-xoC2WYauV2HVMGjWUTf_op7ok5_FY9uj-WN_s82_AcBne4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217471657</pqid></control><display><type>article</type><title>Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level</title><source>MEDLINE</source><source>Portland Press Electronic Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xin, Yanli ; Wang, Yanliang ; Zhong, Liang ; Shi, Bingbo ; Liang, Hui ; Han, Jianyong</creator><creatorcontrib>Xin, Yanli ; Wang, Yanliang ; Zhong, Liang ; Shi, Bingbo ; Liang, Hui ; Han, Jianyong</creatorcontrib><description>Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 ( ) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of was characterized as a maintenance factor of mESCs pluripotency. deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers ( , , , and ) decreased, while that of key TE genes ( , , and ) increased. -positive cells emerged in 6-deficient colonies under trophoblast stem cell culture conditions. As a result of 6 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of , as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20190057</identifier><identifier>PMID: 31036718</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; CDX2 Transcription Factor - metabolism ; Cell Differentiation - genetics ; Cells, Cultured ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Focal Adhesions ; Gene Expression Regulation ; Gene Knockdown Techniques ; Glutathione - metabolism ; Mice ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial Membrane Transport Proteins - antagonists &amp; inhibitors ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Proteins - antagonists &amp; inhibitors ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; Nucleotide Transport Proteins - antagonists &amp; inhibitors ; Nucleotide Transport Proteins - genetics ; Nucleotide Transport Proteins - metabolism ; Octamer Transcription Factor-3 - metabolism</subject><ispartof>Biochemical journal, 2019-06, Vol.476 (11), p.1585-1604</ispartof><rights>2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-aa78495e1f044ea6809ffa09f23d22ea1890f44e9715f17d6eae849cd3adcdbb3</citedby><cites>FETCH-LOGICAL-c289t-aa78495e1f044ea6809ffa09f23d22ea1890f44e9715f17d6eae849cd3adcdbb3</cites><orcidid>0000-0002-9549-3279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3252,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31036718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Yanli</creatorcontrib><creatorcontrib>Wang, Yanliang</creatorcontrib><creatorcontrib>Zhong, Liang</creatorcontrib><creatorcontrib>Shi, Bingbo</creatorcontrib><creatorcontrib>Liang, Hui</creatorcontrib><creatorcontrib>Han, Jianyong</creatorcontrib><title>Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 ( ) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of was characterized as a maintenance factor of mESCs pluripotency. deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers ( , , , and ) decreased, while that of key TE genes ( , , and ) increased. -positive cells emerged in 6-deficient colonies under trophoblast stem cell culture conditions. As a result of 6 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of , as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.</description><subject>Animals</subject><subject>CDX2 Transcription Factor - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cells, Cultured</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Focal Adhesions</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>Glutathione - metabolism</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Membrane Transport Proteins - antagonists &amp; inhibitors</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Proteins - antagonists &amp; inhibitors</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Nucleotide Transport Proteins - antagonists &amp; inhibitors</subject><subject>Nucleotide Transport Proteins - genetics</subject><subject>Nucleotide Transport Proteins - metabolism</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkM1LxDAQxYMoun6cvEuOglQnadq0R138RPCgnkuaTNZK2qxJKu5_b5dV8TLD8H5vmHmEHDM4ZyD4xdX8gQOrAQq5RWZMSMgqyattMgNeiqwEzvbIfozvAEyAgF2ylzPIS8mqGfl6dpoXKi9p783oVMJIl24M3dInHPSKejspY0SKfRtWfug0jQl7qtG5SNsVDbhY-7phQfsuef3mBxM65agdB506P1A1GLpwY1LpbRqROvxEd0h2rHIRj376AXm9uX6Z32WPT7f388vHTPOqTplSshJ1gcyCEKjKCmpr1VR4bjhHxaoa7KTUkhWWSVOiwsmgTa6MNm2bH5DTzd5l8B8jxtT0XVwfrwac_mo4Z1JIVhZyQs82qA4-xoC2WYauV2HVMGjWUTf_op7ok5_FY9uj-WN_s82_AcBne4c</recordid><startdate>20190614</startdate><enddate>20190614</enddate><creator>Xin, Yanli</creator><creator>Wang, Yanliang</creator><creator>Zhong, Liang</creator><creator>Shi, Bingbo</creator><creator>Liang, Hui</creator><creator>Han, Jianyong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9549-3279</orcidid></search><sort><creationdate>20190614</creationdate><title>Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level</title><author>Xin, Yanli ; Wang, Yanliang ; Zhong, Liang ; Shi, Bingbo ; Liang, Hui ; Han, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-aa78495e1f044ea6809ffa09f23d22ea1890f44e9715f17d6eae849cd3adcdbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>CDX2 Transcription Factor - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cells, Cultured</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Focal Adhesions</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>Glutathione - metabolism</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Membrane Transport Proteins - antagonists &amp; inhibitors</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Proteins - antagonists &amp; inhibitors</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Nucleotide Transport Proteins - antagonists &amp; inhibitors</topic><topic>Nucleotide Transport Proteins - genetics</topic><topic>Nucleotide Transport Proteins - metabolism</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Yanli</creatorcontrib><creatorcontrib>Wang, Yanliang</creatorcontrib><creatorcontrib>Zhong, Liang</creatorcontrib><creatorcontrib>Shi, Bingbo</creatorcontrib><creatorcontrib>Liang, Hui</creatorcontrib><creatorcontrib>Han, Jianyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Yanli</au><au>Wang, Yanliang</au><au>Zhong, Liang</au><au>Shi, Bingbo</au><au>Liang, Hui</au><au>Han, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2019-06-14</date><risdate>2019</risdate><volume>476</volume><issue>11</issue><spage>1585</spage><epage>1604</epage><pages>1585-1604</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 ( ) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of was characterized as a maintenance factor of mESCs pluripotency. deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers ( , , , and ) decreased, while that of key TE genes ( , , and ) increased. -positive cells emerged in 6-deficient colonies under trophoblast stem cell culture conditions. As a result of 6 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of , as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.</abstract><cop>England</cop><pmid>31036718</pmid><doi>10.1042/BCJ20190057</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9549-3279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2019-06, Vol.476 (11), p.1585-1604
issn 0264-6021
1470-8728
language eng
recordid cdi_proquest_miscellaneous_2217471657
source MEDLINE; Portland Press Electronic Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
CDX2 Transcription Factor - metabolism
Cell Differentiation - genetics
Cells, Cultured
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Focal Adhesions
Gene Expression Regulation
Gene Knockdown Techniques
Glutathione - metabolism
Mice
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial Membrane Transport Proteins - antagonists & inhibitors
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Proteins - antagonists & inhibitors
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mouse Embryonic Stem Cells - cytology
Mouse Embryonic Stem Cells - metabolism
Nucleotide Transport Proteins - antagonists & inhibitors
Nucleotide Transport Proteins - genetics
Nucleotide Transport Proteins - metabolism
Octamer Transcription Factor-3 - metabolism
title Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slc25a36%20modulates%20pluripotency%20of%20mouse%20embryonic%20stem%20cells%20by%20regulating%20mitochondrial%20function%20and%20glutathione%20level&rft.jtitle=Biochemical%20journal&rft.au=Xin,%20Yanli&rft.date=2019-06-14&rft.volume=476&rft.issue=11&rft.spage=1585&rft.epage=1604&rft.pages=1585-1604&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20190057&rft_dat=%3Cproquest_cross%3E2217471657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217471657&rft_id=info:pmid/31036718&rfr_iscdi=true